Recall that $A_{DFA} = \{\langle M, w \rangle \mid M \text{ is a DFA that accepts } w \}$ is decidable, while $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$ is undecidable. We similarly define $A_{CFG} = \{\langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G)\}$. Is A_{CFG} decidable?

Also note that a language is **co-Turing-recognizable** if its complement is Turing-recognizable.

Topics Covered

1. CFLs and Decidability
2. More TM Languages
3. More CFG Languages

1 CFLs and Decidability

Theorem If L is a CFL then L is decidable.

Proof Recall the conditions for a context-free grammar to be in Chomsky normal form. All rules must be of the form $A \rightarrow BC$, $A \rightarrow a$, or $S \rightarrow \varepsilon$. If a grammar G is in Chomsky normal form, then for a string $w \in L(G)$, a derivation of w takes $2n - 1$ steps where $n = |w|$, or a single step if $w = \varepsilon$. In this case, we can decide $L = L(G)$ with a TM D:

[D, on input w:

1. Consider all derivations of length $2|w| - 1$. If one derives w, accept. Otherwise, reject.]

As we can convert any CFG to Chomsky normal form in finite time, we can use this decider to decide any context-free language. In other words, if L is a CFL, then L is decidable. ■
Proof that A_{CFG} is Decidable A decider for A_{CFG} is quite similar to the above decider for a CFL. Construct D as follows:

D, on input (G, w):
1. Convert G into Chomsky normal form.
2. Consider all derivations of length $2|w| - 1$. If one derives w, accept. Otherwise, reject.

Again, note that D is a decider because steps 1 and 2 both take finite time.

We know that CFLs are decidable. Are the decidable languages A_{DFA} and A_{CFG} context-free? We don’t know, but we might suspect not. Intuition suggests that if we had a DFA accepting a finite language, and we then applied the pumping lemma for CFLs, we might reach a contradiction. However, more formalization would be needed to show that this is or isn’t true. Overall, we have the following relationships among types of languages:
2 More TM Languages

The language $E_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \}$. This is not Turing-recognizable, as can be proven by a reduction from A_{TM}^C. Given an input $\langle M, w \rangle$, we want a computable function $f(\langle M, w \rangle) = \langle M' \rangle$ such that $\langle M, w \rangle \in A_{TM}^C$ if and only if $\langle M' \rangle \in E_{TM}$.

Proof that E_{TM} is Turing-Unrecognizable Define f such that on input $\langle M, w \rangle$, f outputs $\langle M' \rangle$ whose description is, “On input x, run M on w, and do as M does.” If M does not accept w, then M' accepts \emptyset, so $\langle M' \rangle \in E_{TM}$. If M accepts w, then M' accepts Σ^*, so $\langle M' \rangle \notin E_{TM}$. Moreover, f is computable because we can construct a TM description using a straightforward algorithm. Therefore $A_{TM}^C \leq_m E_{TM}$, implying that E_{TM} is Turing-unrecognizable.

Note that we could construct a recognizer for E_{TM}^C by running M on all inputs w until it accepts. Thus, E_{TM}^C is Turing-recognizable.

The language $\text{Decider}_{TM} = \{ \langle M \rangle \mid M$ is a decider$\}$. We cannot use Rice's Theorem to prove this is undecidable; at a high level, this is because the language is conditioned on the TM M itself, not M's language. However, we can reduce from A_{TM}. Without going into too much detail, note that the mapping reduction would involve taking in an input $\langle M, w \rangle$, and outputting $\langle M' \rangle$ with description, “On input x, run M on w. Accept if M accepts. Else, loop forever.” It turns out that we can even say more about Decider_{TM}—it is neither Turing-recognizable nor co-Turing-recognizable.

However, the language $\text{AcceptInTime}_{TM} = \{ \langle M, w, t \rangle \mid M$ accepts w in at most t steps$\}$ is decidable. A decider could run M on w for t steps, and accept if M accepts and reject otherwise. This takes finite time, so AcceptInTime_{TM} is decidable.

Proof that Decider_{TM} is Turing-Unrecognizable We prove this by a reduction from EQ_{TM}, which we know to be neither Turing-recognizable nor co-Turing-recognizable. To show that $\text{EQ}_{TM} \leq_m \text{Decider}_{TM}$, we want a computable function $f(\langle M_1, M_2 \rangle) = \langle M \rangle$ where $\langle M_1, M_2 \rangle \in \text{EQ}_{TM}$ if and only if $\langle M \rangle$ is a decider. Let M be a machine with description, “On input $\langle w, t \rangle$, run M_1 and M_2 on w for t steps. If both or neither accept, then accept. If one accepts, then finish running the other on w. If it accepts, accept. If it rejects, loop forever. Otherwise, also loop forever.”

First, note that f is computable, as we can construct a Turing machine to compute it. Next, consider the correctness of f.

1. For the first direction, suppose $\langle M_1, M_2 \rangle \in \text{EQ}_{TM}$. Let $\langle w, t \rangle$ be given. We will show
that M halts on (w, t) in this case.

(a) First, suppose $w \in L(M_1) = L(M_2)$. Let t_1 be the number of steps M_1 takes to accept w, and let t_2 be the number of steps M_2 takes to accept w. If $t < t_1, t_2$, then neither M_1 nor M_2 accepts, and M accepts. If $t_1 < t < t_2$, then M_1 accepts and and M runs M_2 until M_2 also accepts, and M accepts. If $t > t_1, t_2$, both M_1 and M_2 accept in time t and M accepts.

(b) Next, suppose $w \notin L(M_1) = L(M_2)$. Then neither machine accepts w in t steps, so M accepts. Thus in these two cases when $(M_1, M_2) \in EQ_{TM}$, M halts.

2. For the other direction, suppose $(M_1, M_2) \notin EQ_{TM}$. To show that M is not a decider, we want to find an input (w, t) such that M loops forever. Without loss of generality, let w be a string such that $w \in L(M_1)$ and $w \notin L(M_2)$. Let t be the number of steps it takes M_1 to accept w. Then on input (M, w), M sees that M_1 accepts but M_2 has not yet accepted (so M_2 either rejects or loops). Since M_2 will not accept w, M loops forever. In particular, M is not a decider.

Thus, $(M_1, M_2) \in EQ_{TM}$ if and only if M is a decider. Since $EQ_{TM} \leq_m \text{DECIDER}_{TM}$, and EQ_{TM} is not Turing-recognizable, it follows that DECIDER_{TM} is not Turing-recognizable. Moreover, we can use the same function f to show that $EQ_{TM}^{C} \leq_m \text{DECIDER}_{TM}^{C}$, so DECIDER_{TM}^{C} is not Turing-recognizable. In other words, DECIDER_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

3 More CFG Languages

The language $\text{ALL}_{DF,A} = \{ (M) \mid M \text{ is a DFA that accepts everything}; i.e. L(M) = \Sigma^* \}$. This is decidable, as we can check whether any path in the DFA leads to a reject state. However, the language $\text{ALL}_{CFG} = \{ (G) \mid G \text{ is a CFG such that } L(G) = \Sigma^* \}$ is undecidable.

Proof that ALL_{CFG} is Undecidable This can be shown by a reduction from A_{TM}. The computable function f, on input (M, w), outputs the description of a CFG G that generates any string over $\Gamma \cup Q \cup \{ \# \}$ that is not an encoding of an accepting CH of M on w. At a high level, a computation history looks something like:

$$
\#q_0w_1w_2\ldots w_n\#b_1q_2w_2\ldots w_n\#\ldots\#
$$

Let $C_1 = q_0w_1w_2\ldots w_n$, $C_2 = b_1q_2w_2\ldots w_n$, and so on. We then have a CH, and format it so that every other C_i is reversed:

$$
s = \#C_1\#C_2^R\#C_3\#C_4^R\#\ldots\#C_{\ell}\#
$$

Consider the conditions in which s does not represent an accepting configuration:
1. It does not start with \(#C_1 \) or does not end in \\#.
2. Some \(C_i \) does not encode a valid configuration.
3. \(C_\ell \) does not contain \(q_{\text{accept}} \).
4. For some \(i \), \(C_{i+1} \) does not follow from \(C_i \).

We can generate \(s \) by taking the union of four CFGs:

1. Generate all strings that don’t have the form \(#C_1 \ldots # \).
2. Only make invalid configurations.
3. Only make \(C_\ell \) not containing \(q_{\text{accept}} \).
4. Generate configurations such that \(C_{i+1} \) does not follow from \(C_i \). This is tricky, and it relies on having reversed every other \(C_i \) in \(s \).

When we take the union of these four CFGs, the result is a CFG \(G \) such that if \(M \) does accept \(w \), then \(G \) cannot generate \(w \). If \(M \) does not accept \(w \), then there is a rejecting computation history, which \(G \) can generate. Thus, \(A_{TM} \leq_m \text{AllCFG} \), so \(\text{AllCFG} \) is undecidable. ■

Another CFG language, \(EQ_{CFG} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs for the same language} \} \) is also undecidable.