CSCI 0510
Models of Computation

Lecture 26

P-Complete Problems
Overview

• The class \mathbf{P}.
• CIRCUIT VALUE
• Log-space computations and \mathbf{P}-complete langs.
• CIRCUIT VALUE is \mathbf{P}-complete.
• The composition of two log-space computations is log-space computable.
• MONOTONE CIRCUIT VALUE is \mathbf{P}-complete.
• LINEAR INEQUALITIES is \mathbf{P}-complete.
• Parallelizability of problems in \mathbf{P}.
The Class \mathbf{P}

- A language $L \subseteq \Sigma^*$ is in \mathbf{P} if there is a DTM M_L and polynomial $p(n)$ such that for every $x \in \Sigma^*$, M_L halts in $p(|x|)$ steps and accepts x if it is in L and rejects it otherwise.
CIRCUIT VALUE (CV)

CIRCUIT VALUE (CV)

• *Instance*: A description of a circuit *over a complete basis* (AND, OR, NOT, e.g.) with fixed values for input variables and a designated output.

• *Answer*: “Yes” if the output has value 1.
Log-space Computations

- Logspace computations are defined for TMs in which the input tape is read-only.

- **Definition** A log-space program runs on a DTM and uses space on its work tape(s) that is logarithmic in the length n of its inputs.
Reducing $L \in \mathcal{P}$ to CV

- Let M_L recognize $L \in \mathcal{P}$.

- Write a program that describes a circuit to simulate M_L on x in $T = p(n)$ steps, $n = |x|$.
Deterministic Circuit Simulating DTM

• Same circuit used to simulate NDTM except that it does not have choice inputs.
Program to Describe Circuit for \(L \in \mathbf{P} \)

\[
\begin{align*}
\textbf{for} & \quad i = 0 \textbf{ to } n-1 \\
& \quad \text{write}_\text{cell}_\text{circuit}_\text{input}(i,x_i) \\
\textbf{for} & \quad i = n \textbf{ to } p(n) \\
& \quad \text{write}_\text{cell}_\text{circuit}_\text{input}(i,\beta) \\
\text{write}_\text{control}_\text{unit}(0) \\
\textbf{for} & \quad t = 1 \textbf{ to } p(n) \\
& \quad \text{write}_\text{control}_\text{unit}(t) \\
\textbf{for} & \quad j = 1 \textbf{ to } p(n) \\
& \quad \text{write}_\text{cell}_\text{circuit}(j,t) \\
\text{write}_\text{circuit}_\text{for}_\text{accept}_\text{state}
\end{align*}
\]
Program to Describe Circuit for $L \in P$

- $O(\log p(n)) = O(\log n)$ bits used to represent indices i, t, j.
- $O(\log n)$ bits used to represent
 - `write_cell_circuit_input(i,a)`
 - `write_control_unit(t)`
 - `write_cell_circuit(j,t)`
 - `write_circuit_for_accept_state`
- Can write previous program in $O(\log n)$ space.
P-Complete Languages

- **Definition** A language L is **P**-complete if
 - a) L is in **P** and
 - b) Every language in **P** is reducible to L by a log-space DTM.

- **Theorem** CIRCUIT VALUE is **P**-complete

- **Proof** a) CV is in **P** because the value of a circuit can be computed from inputs in P-time. b) The above simulation demonstrates that a log-space DTM can translate any language \(L \in \textbf{P} \) to CV.
Log-space Computations

• **Theorem** Log-space computations run in polynomial time.

• **Proof** Space ≤ $a(\log n)$. $X =$ number configurations. $X \leq (\text{no. input head positions}) \times (\text{no. strings of length } a(\log n) \text{ over alphabet of size } k) \times (\text{no. work tape head positions})$.

$$X \leq O(n \, a(\log n) \, k^a \log n) = O(n^p)$$

where $p = 1 + a(\log k) + \log(a(\log n))$. X is polynomial in n.

• If a configuration repeats, the computation is in an infinite loop. Thus, at most X steps taken.
Composition of Log-space Reductions
Composition of Log-space Reductions

• **Theorem** The composition of two log-space translators is a log-space translator.

• **Proof** Let T_1 and T_2 be log-space translators where output of T_1 goes directly to input to T_2. When T_2 needs another input, T_1 produces a new output.

• Counter$_1$ holds h_1, T_1’s position on (virtual) Output_Tape$_1$

• If T_2 needs to move back one step, h_1 is decremented and T_1 re-simulates on original input to produce $h_1 - 1$ outputs. Since T_1 executes at most poly many steps, $|\text{Counter}_1| = O(\log n)$ space.
MONOTONE CV is \(\mathbf{P} \)-Complete

- A monotone circuit uses only AND and OR.

MONOTONE CIRCUIT VALUE

- *Instance:* A description of a *monotone* circuit with fixed values for inputs variables and a designated output.
- *Answer:* “Yes” if the output has value 1.
MONOTONE CV is \(\mathbf{P} \)-Complete

- **Theorem** MONOTONE CIRCUIT VALUE is \(\mathbf{P} \)-complete

- **Proof** Convert from circuits with AND, OR and NOT to dual rail circuits; represent \(x \) by \((x, \overline{x})\). Then \(x \) AND \(y \) is replaced by \((x \text{ AND } y, \overline{x} \text{ OR } \overline{y})\) and OR is replaced by \((x \text{ OR } y, \overline{x} \text{ AND } \overline{y})\). NOT \(x \) is replaced by \((\overline{x}, x)\). The latter is obtained from input \((x, \overline{x})\) by interchanging the two inputs.

- Given a circuit \(C \), a monotone circuit \(M \) is produced by replacing each AND, OR and NOT step in \(C \) by two steps in \(M \), which can be done in log-space.
LINEAR INEQUALITIES

• **Instance:** An integer-valued $m \times n$ matrix A and a column m-vector b.
• **Answer:** “Yes” if there is a rational column n-vector $x > 0$ such that $Ax \leq b$.

© John E. Savage
LINEAR INEQUALITIES \(\mathbf{P} \)-Complete

- **Theorem** LINEAR INEQUALITIES is \(\mathbf{P} \)-complete
- **Proof** Reduce CV to LINEAR INEQUALITIES (LI). Convert gates and inputs in a circuit into a set of inequalities. (Note: \(a=b \) equiv. to \(a \leq b, b \leq a \))

<table>
<thead>
<tr>
<th>Type</th>
<th>Input</th>
<th>Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>(x_i = 1)</td>
<td>(x_i = 0)</td>
</tr>
<tr>
<td>Inequalities</td>
<td>(x_i = 1)</td>
<td>(x_i = 0)</td>
</tr>
<tr>
<td>(w = 1 - u)</td>
<td>(w \leq u)</td>
<td>(u \leq w)</td>
</tr>
<tr>
<td>(w \leq v)</td>
<td>(v \leq w)</td>
<td></td>
</tr>
<tr>
<td>(u + v - 1 \leq w)</td>
<td>(w \leq u + v)</td>
<td></td>
</tr>
</tbody>
</table>

- Can convert instance of CV to LI in log-space.
- A “Yes” instance of CV iff a “Yes” instance of LI.
Parallelizability of Problems in P

- **Theorem** If a P-complete problem can be solved in polylogarithmic time with polynomially many processors on a Concurrent Read, Concurrent Write PRAM (parallelizable random access machine), then so can all problems in P, that is, they are all fully parallelizable.
Summary

• The class P.
• CIRCUIT VALUE
• Log-space computations and P-complete langs.
• CIRCUIT VALUE is P-complete.
• The composition of two log-space computations is log-space computable.
• MONOTONE CIRCUIT VALUE is P-complete.
• LINEAR INEQUALITIES is P-complete.
• Parallelizability of problems in P.