CSCI 1010
Models of Computation

Lecture 22
Space-Time Tradeoffs
Overview

- Pebble Game on directed acyclic graphs (DAGs)
- Models space-time tradeoffs
- We develop lower bounds on space for trees, FFT and pyramid graphs
- FFT exhibits genuine tradeoff of space for time
- We also exhibit extreme tradeoffs
- This lecture provides a taste of “applied” theory
Motivation

- A CPU has a finite number of registers in which to do a computation.

- The Pebble Game models assignment of data to registers so that we can reduce time for a given amount of space. This is the register allocation problem, a standard compiler problem.

- If primary memory is too small to hold a program and data, secondary storage is necessary. Then, minimization of data movement between the two memories, the I/O problem, an OS problem.
Pebble Game

• Game is played on a directed acyclic graph (DAG).
• A pebble on a vertex corresponds to a datum being placed in a memory location (register).
• The number of pebbles (registers) is fixed.
• The goal is to advance pebbles to output vertices.
 – Can remove a pebble on an output after placed there.
• What is the minimum number of pebbles?
• How does space trade for time?
• Can extreme space-time behavior arise?
The Pebbling Problem

• Full set of rules on next slide.
• The goal is to pebble (compute) outputs.
• Inputs can be pebbled at any time. To pebble non-inputs must have pebbles on their predecessors.
Rules of the Pebble Game

• *(Initialization)* A pebble can be placed on an input vertex at any time.

• *(Computation Step)* A pebble can be placed on (or moved to) any non-input vertex only if all its immediate predecessors carry pebbles.

• *(Pebble Deletion)* A pebble can be removed at any time.

• *(Goal)* Each output vertex must be pebbled at least once.
Pebbling Strategy

• A **pebbling strategy** is a series of applications of the rules that results in pebbling all output vertices with pebbles.

• The **space** used by a strategy is the maximum number of pebbles that are on the graph at any one time.

• The **time** used by a strategy is the total number of placement of pebbles on vertices.
The 8-Input FFT Graph

The graph consists of many overlapping trees

- What is the minimum number of pebbles needed to pebble it?
- Is there a tradeoff between space and time?
A Strategy to Pebble a First Output

• An FFT contains complete balanced binary trees.
• Five pebbles suffice to pebble the 16-input FFT.

Pebble vertices in numbered order. Here the most pebbles are on graph.
Pebbling Binary Tree

• **Theorem** The complete balanced binary tree on 2^n leaves requires space $\geq n+1$. It can be pebbled with this minimal space in $2^{n+1}-1$ time (or placements).

• **Proof** There is a last path from an input to the output to have a pebble. (Solid line in figure.) Every edge into this path must be blocked by a pebble requiring $\geq n$ pebbles. Add the last pebble on an input and the result follows. The time bound follows because each vertex is pebbled once.
Minimum Space on the Binary Tree

• As the theorem demonstrates, the minimum space, S_{min}, to pebble a complete balanced binary tree with 2^n leaves and $N = 2^{n+1} - 1$ vertices satisfies $S_{\text{min}} = n+1$. Thus, $S_{\text{min}} \geq \log_2 (N+1)$.

• We ask if for some other graph S_{min} is a larger function of N.

• This will be true for the pyramid graph.
Pebbling the Pyramid Graph

• The pyramid graph on n inputs can be pebbled with n pebbles. We show that $S_{\text{min}} = n$.

• As shown below, when a pebble is placed on the last open path to the output, there are at least $n-1$ other pebbles on the graph.

• This graph has $N = \frac{n(n+1)}{2}$.

• Thus, $S_{\text{min}} > \sqrt{2N} - 1$.
A Genuine Tradeoff

- Balanced binary tree & pyramid can be pebbled with minimum space without repelling. Not so with the FFT, as stated below. (See book.)
- **Theorem** To pebble the FFT with S pebbles in T time steps requires that $(S+1)T \geq n^2/16$.

Extreme Tradeoffs

• Is there a family of graphs \{H_k\} such that if H_k is pebbled with S_{min} pebbles, time is very large, but if $S_{\text{min}} + 1$ pebbles used, time is minimal?
Motivation for This Topic

• Compilers generally try to minimize the number of registers used by code.

• Let $|H_k|$ be the size of the graph H_k.

• Theorem If a compiler succeeds for the graph family $\{H_k\}$, the work (number of pebblings) will be exponential in $|H_k|$ with S_{min} registers but only $|H_k|$ with $S_{\text{min}} + 1$ registers.
Extreme Tradeoffs

• By induction easy to see that H_k has $S_{\text{min}} = k$.
• Similarly, can pebble H_k in time $|H_k|$ with $S = k+1$.
• Also, $|H_k| = 4k+3 + |H_{k-1}|$, $|H_k| = O(k^2)$
Extreme Tradeoffs

- Let T_k be the time to pebble H_k with $S = S_{\text{min}} = k$.
- To pebble one output of H_k, one pebble must be advanced to the white vertex. Do this $k+1$ times to pebble the $k+1$ outputs.
Extreme Tradeoffs

- $T_k = [T_{k-1} + 2(k+1)](k+1) + (k+1)^2$ or
- $T_k = [T_{k-1} + 3(k+1)](k+1) > (k+1)T_{k-1}$
- Since $T_2 = 30$, by induction $T_k \geq 2((k+1)!)$
- By Stirling’s approx.*, T_k is exponential in $|H_k|$.

* See https://en.wikipedia.org/wiki/Stirling%27s_approximation
Review

• Pebble Game on directed acyclic graphs (DAGs)
• Models *space-time* tradeoffs
• We develop *lower bounds on space* for trees, FFT and pyramid graphs
• FFT exhibits genuine tradeoff of space for time
• We also exhibit extreme tradeoffs
• This lecture provides a taste of “applied” theory