CSCI 1010
Models of Computation

Lecture 19

Limits to Language Recognition
Overview

• Universal TMs, again
• Definitions of decidable and recursively enumerable (r.e.) languages.
• A first r.e. but not decidable language, \(L_1 \).
• The role of reductions.
• Examples of undecidable problems.
• Rice’s Theorem
Encoding Turing Machines

• **Goal**: Define a *canonical representation* $\rho(M)$ of a TM M so that a *universal TM* can simulate it.

 – Encode as integers in set \(\{0,1,2,\ldots, |Q| + |\Gamma| + 2\} \) the states, Q; inputs letters Γ, blank β; and moves $\{L,R\}$.

 – Encode a transition $\delta(p,y) = (q,z)$ as 4-tuple (p,y,q,z) and transition function δ as string $\rho(M)$ of 4-tuples

 – Represent both “(” and “)” by 10 and comma by 01.

 – Convert integers into k-bit binary numbers. Then, replace 0 by 00 & 1 by 11 for $k = \lceil \log_2 (|Q| + |\Gamma| + 2) \rceil$
Encoding Turing Machines

• Example: \((1,2,3,4)(2,1,5,3)\) encoded in 3-bit binary as

\[
10\ 000011\ 01\ 001100\ 01\ 001111\ 01\ 110000\ 10 \\
10\ 001100\ 01\ 000011\ 01\ 110011\ 01\ 001111\ 10 \\
\]

– Spaces added for clarity
Universal TM

Let universal TM U have alphabet \{0,1,0,1\}.

To simulate M, place \(\rho(M)\) left-adjusted on tape of U with the blank \(\beta\) to its left. Place input \(w\) to its right.

Use 0,1 to mark head position in \(\rho(M)\) and in \(w\).

Simulate by bouncing between \(\rho(M)\) and a position in \(w\).

U simulates M on \(w\). U halts iff M halts; gives same result
Definitions

• Language L is **recursively enumerable** (r.e.) if there is a TM that accepts strings in L by halting in an accept state and does not accept strings not in L. *(It may not halt on strings not in L.)*

• Language L is **decidable** if both L and L bar are r.e.
 That is, there is an **algorithm** A *(a halting TM)* that accepts only strings in L. We say that A **decides** L.
Two Decidable Languages

1. Every regular language is decidable.

2. \(\{ \rho(M) \mid M \text{ is a DFSM and } L(M) = \emptyset \} \), \(\emptyset \) empty set

Proof Sketch:

– Do a BFS of graph of \(M \) to see if an accepting state can be reached. If not, \(L(M) = \emptyset \)

– Time is polynomial in \(|\rho(M)| \).
A Language that is Not R.E.

- Let M_i be ith TM (based on representation $\rho(M)$)
- Let w_i be ith binary string.

$$L_1 = \{w_i \mid w_i \text{ is not accepted by } M_i\}$$

- Put 1 in (i,j) in matrix if w_i not accepted by M_j
- w is in L_1 iff it corresponds to a 1 on the diagonal.
Diagonalization

• **Theorem** L_1 is not recursively enumerable.

• **Proof** Let w_i and M_i denote ith binary string and ith TM. Assume L_1 is r.e. and TM M_k recognizes it.

• If $w_k \in L_1$, M_k accepts it, which means $w_k \notin L_1$. But if $w_k \notin L_1$, then M_k does not accept it, which means $w_k \notin L_1$.

• Thus, $w_k \in L_1$ iff $w_k \notin L_1$, a contradiction. Thus, L_1 cannot be recursively enumerable.
R.E. but Not Decidable Languages

• **Theorem** The complement of a decidable language is decidable.

• **Proof** If L is decidable, there is a TM, $M(L)$, that halts on all inputs and recognizes L. It has one halt state.

• Change the accepting halt state to rejecting. Make all other halt states, which are rejecting, accepting. Put this TM into standard from by adding one new halt state. Make all new accepting halt states move to that new halt state on all inputs.
An R.E. Language Not Decidable

• **Theorem** The following language is r.e. but not decidable.

 \[L_2 = \{ w_i \mid w_i \text{ is accepted by } M_i \} \]

• **Proof** The complement of \(L_2 \) is \(L_1 \) which is not r.e. To show \(L_2 \) is r.e., construct a TM \(M^* \) that given \(w_i \), uses enumeration to find \(M_i \). \(M^* \) then simulates \(M_i \) on \(w_i \) using a universal TM. By definition, \(M^* \) accepts exactly those \(w_i \) in \(L_2 \).
Reducibility

• Let L_1 and L_2 be languages over Σ_1 and Σ_2. L_1 is reducible to L_2 ($L_1 \rightarrow_{TM} L_2$) if there is an algorithm A that translates each w in Σ_1^* into a z in Σ_2^* such that $w \in L_1$ if and only if $z \in L_2$. A is also called a reduction.

 – **Note**: Reductions used with \textbf{NP}-complete languages are \textbf{P}-time algorithms. Here they are generally not \textbf{P}-time.
 – We use reductions to show that if L_2 can be decided, so can L_1. If L_1 cannot be decided, the same holds for L_2.

© John E. Savage

CSCI 1010 Lect 19 12
Reducibility

• **Theorem** Let $L_1 \to_{TM} L_2$. If L_2 is decidable, L_1 is decidable. If L_1 is undecidable, L_2 is also undecidable.

• **Proof** Let A be the algorithm reducing L_1 to L_2. If L_2 is decidable, a halting TM M_b recognizes it. Let TM M_a do following: On input w, M_a uses A to produce z which it passes to M_b. If M_b accepts w, M_a accepts. If M_b rejects it, the same holds for M_a. Thus, M_a decides L_1.

• Let L_1 be undecidable. If we assume that L_2 is decidable, from the above, L_1 is decidable, a contradiction. Thus, L_2 cannot be decidable.
Halting is Undecidable

• Halting problem (language)
 \[L_H = \{ [\rho(M), x] \mid M \text{ halts on } x \} \]

• Theorem: \(L_H \) is r.e. but not decidable.

• Proof \(L_H \) is r.e. because, if \([\rho(M), x]\) is given to a universal TM U, U will halt and accept it.
Halting is Undecidable

• **Proof (cont.)** To show L_H not decidable, assume M_H exists to decide it and show this implies that L_1 is decidable, which it is not. We show L_1 is reducible to L_H. Recall the definition of L_1:

$$L_1 = \{ w_i \mid w_i \text{ is not accepted by } M_i \}$$
Halting is Undecidable

• Proof (cont.)

\[L_1 = \{ w_i | w_i \text{ is not accepted by } M_i \} \]

• We reduce \(L_1 \) to \(L_H \).

• Using \(M_H \) construct \(M' \) to decide \(L_1 \). On \(x \), \(M' \) uses its work tapes to generate \(w_1 \) and \(\rho(M_1) \), \(w_2 \) and \(\rho(M_2) \), etc. until it finds \(w_i = x \). Each \(\rho(M_i) \) is string of 4-tuples \((p,y,q,z)\)

• \(M' \) simulates \(M_H \) on \([\rho(M_i), x]\) to determine if \(M_i \) halts on \(x \). If \(M_i \) does not halt, \(M' \) accepts \(x \). If \(M_i \) does halt on \(x \), \(M' \) simulates \(M_i \) on \(x \) and rejects if it accepts and accepts if it rejects. Thus, \(M' \) recognizes \(L_1 \). Contradiction!
Halting Problem Not Decidable
A Direct Proof

$L_H = \{[\rho(M), x] \mid M \text{ halts on } x \}$

- **Theorem** L_H is r.e. but not decidable.
- **Proof** Assume that M_H decides L_H. Given $[\rho(M), x]$, M_H halts and reports whether $[\rho(M), x]$ is in L_H or not.

- Construct H_1 which, given $[\rho(M), x]$, simulates M_H on $[\rho(M), x]$. If M_H does not accept (M does not halt on x), let H_1 accept. If M_H does accept, H_1 enters an infinite loop.

- Finally, design H_2. On input w, H_2 rejects if w is not a TM description. Otherwise, H_2 simulates H_1 on $[w, w]$.

- What happens when H_2 is given $w = \rho(H_2)$?
Halting Problem is Not Decidable

• On input $\rho(H_2)$, H_2 simulates H_1 on $[\rho(H_2), \rho(H_2)]$. Thus, H_1 simulates M_H on $[\rho(H_2), \rho(H_2)]$.
 – If M_H says that H_2 halts on $\rho(H_2)$, then H_1 runs forever which means H_2 runs forever, a contradiction.
 – If M_H says that H_2 does not halt on $\rho(H_2)$, then H_1 halts which means that H_2 halts, another contradiction.

• It follows that the assumption that L_H was decidable is incorrect.
Empty Set Recognition is Undecidable

\[L_E = \{ \rho(M) \mid L(M) = \emptyset \} \]

- **Theorem**: \(L_E \) is not decidable.

- **Proof** Assume \(M_E \) exists deciding \(L_E \). Then show \(L_H \) can be decided, contradiction. We show \(L_H \) is reducible to \(L_E \).

- Given a TM \(M \) (i.e. \(\rho(M) \)) and a string \(w \), our goal is to determine if \(M \) halts on \(w \). Design a TM \(T_1[M,w] \) that on input \(x \) loops if \(x \neq w \) and simulates \(M \) on \(w \) otherwise. \(T_1[M,w] \) either does not halt in which case \(L(T_1[M,w]) = \emptyset \) or it does halt and its language is not empty.

- To decide \(L_H \), given \(\rho(M) \) and \(w \), create \(T_1[M,w] \) and then pass it to \(M_E \) which decides \(L_H \). Contradiction.
A Non-Computable Function

• Let $t(M,w)$ be the number of steps M takes to halt on input w or -1 if M does not halt.
• $t(M,w)$ cannot be computable because that would allow one to solve the Halting problem.
• Why is that?
Rice’s Theorem

• It says that no algorithm exists to determine from a description of a TM whether or not the language it accepts falls into any proper subset of the r.e. languages.

• \(\text{RE} \) denotes the r.e. languages over the alphabet \(\mathcal{B} \). Let \(\mathcal{C} \) be a proper subset of \(\text{RE} \) and let

\[
\mathcal{L}_\mathcal{C} = \{ \rho(M) \mid L(M) \in \mathcal{C} \}
\]

be the TMs whose languages are in \(\mathcal{C} \).
Rice’s Theorem

• **Theorem (Rice)** Let \(C \) be a non-trivial set of r.e. languages. That is, \(C \subseteq \text{RE} \) but \(C \neq \text{RE}, C \neq \emptyset \). Then \(\mathcal{L}_C \) is not decidable.

• **Proof** By contradiction. Assume \(M_C \) decides \(\mathcal{L}_C \). We show this implies \(L_H \) is decidable.

• (a) If \(B^* \) in \(C \), let \(L \) be a language in \(\text{RE} – C \). (b) If \(B^* \) not in \(C \), let \(L \) be in \(C \). There is such an \(L \) because \(C \) is a proper subset of \(\text{RE} \).

• Let \(M_L \) recognize \(L \).
Rice’s Theorem

• If M_C decides \mathcal{L}_C, we construct M_H deciding L_H. For arbitrary TM M and input w, construct $T_2[M,w]$:
 – On input x, $T_2[M,w]$ in parallel a) simulates M_L on x and b) simulates M on w, by alternating steps between them.

• If M_L accepts x or M halts on w, $T_2[M,w]$ halts and accepts. If M_L rejects x, continue simulation of M on w. Accept if M halts on w.

• $T_2[M,w]$ accepts every $x \in L$. It accepts some $x \notin L$ iff M halts on w. Thus, $L(T_2[M,w]) = L$ if M does not halt on w and $L(T_2[M,w]) = \mathcal{B}^*$ if M does halt on w.

• Use M_C on $T[M,w]$ to decide halting or realize M_H. Contradiction!
Application of Rice’s Theorem

• **Theorem** Let \(\text{REGULAR} = \{\rho(M) \mid L(M) \text{ is regular}\} \). \(\text{REGULAR} \) is not decidable.

• **Proof** The class of regular languages is a non-empty subset of the set of r.e. languages. The result follows from Rice’s Theorem.
Is It Possible to Detect Infected Code?

• Consider the following piece of code

  ```
  f();
  Infect(f());
  ```

• Is the code infected?

 – Yes, if f() halts.

 – No, if f() does not halt.

• Any tester for infected code must determine whether or not a function f() (a TM) halts!
Summary

• Universal TMs, again
• Definitions of decidable and recursively enumerable (r.e.) languages.
• A first r.e. but not decidable language, L_1.
• The role of reductions.
• Examples of undecidable problems.
• Rice’s Theorem