CSCI 1010
Models of Computation

Lecture 15
FSM Languages are Regular
Overview

• Regular languages are described by regular expressions.
• We show that every language recognized by an FSM is regular.
• **Pumping Lemma** – a technique to show that some languages not regular.
• When is a regular language finite or infinite?
• Algorithms for decision problems on regular languages.
The Objective

• The goal is to show the following

Theorem: If the language L is recognized by an FSM $M = (\Sigma, Q, \delta, s, F)$, then it is described by a regular expression.

Proof Let $Q = \{q_1, \ldots, q_n\}$. For each state q_i we describe the strings causing M to move from s to q_i with a regular expression. We then form the union of the regular expressions taking M from s to each state in F.
Proof

• \(R_{i,j}^{(k)} \) is the set strings taking \(M \) from \(q_i \) to \(q_j \) visiting only states in \(Q^{(k)} = \{q_1, q_2, \ldots, q_k\} \) \((Q^{(0)} = \emptyset)\). Since \(Q^{(n)} = Q \), \(R_{i,j}^{(n)} \) = all strings taking \(q_i \) to \(q_j \).

• Let \(r_{i,j}^{(k)} \) be an r.e. denoting strings in \(R_{i,j}^{(k)} \).

• \(R_{t,a}^{(n)} \cup R_{t,b}^{(n)} \cup \ldots \cup R_{t,h}^{(n)} \) is the set of strings taking \(M \) from the start state \(q_t = s \) to accept states \(q_a, q_c, \ldots, q_h \).

• The r.e. \(r_{t,a}^{(n)} + r_{t,b}^{(n)} + \ldots + r_{t,h}^{(n)} \) describes these accepted strings.
Proof (cont.)

- $R_{i,j}^{(0)}$ = strings taking M from q_i to q_j thru no other states. a in $R_{i,j}^{(0)}$ if $\delta(q_i,a) = q_j$. ϵ is in $R_{i,j}^{(0)}$ if $i = j$.

- $r_{i,j}^{(0)} = a + ... + z$ if $i \neq j$ and a, ..., z take M from q_i to q_j.

- Add ϵ to $r_{i,j}^{(0)}$ if $i=j$.

| $T^{(0)} = \{r_{i,j}^{(0)}\}$ |
|:---:|---:|---:|---:|---:|---:|
| $i \backslash j$ | 1 | 2 | 3 | 4 | 5 |
| 1 | ϵ | 0 | 1 | \emptyset | \emptyset |
| 2 | \emptyset | ϵ | 0 | 1 | \emptyset |
| 3 | \emptyset | \emptyset | $\epsilon + 0 + 1$ | \emptyset | \emptyset |
| 4 | \emptyset | \emptyset | 1 | \emptyset | ϵ |
| 5 | \emptyset | 0 | 0 | 1 | ϵ |
Proof (cont.)

• Because $R_{i,j}^{(k)}$ is set of strings taking M from q_i to q_j passing only through $Q^{(k)} = \{q_1, q_2, \ldots, q_k\}$,

 $R_{i,j}^{(k)} = R_{i,j}^{(k-1)} \cup R_{i,k}^{(k-1)} (R_{k,k}^{(k-1)})^*R_{k,j}^{(k-1)}$

• In words $R_{i,j}^{(k)} = \{\text{strings taking } M \text{ from } q_i \text{ to } q_j \text{ via } Q^{(k-1)}\}$ plus $\{\text{strings taking } M \text{ from } q_i \text{ to } q_k \text{ via } Q^{(k-1)}\} \cdot \{\text{strings taking } M \text{ from } q_k \text{ to } q_k \text{ via } Q^{(k-1)}\} \cdot \{\text{strings taking } M \text{ from } q_k \text{ to } q_j \text{ via } Q^{(k-1)}\}$.

• This is a *dynamic programming algorithm*.
Recursive Decomposition of $R_{i,j}^{(k)}$

$$R_{i,j}^{(k)} = R_{i,j}^{(k-1)} \cup R_{i,k}^{(k-1)} (R_{k,k}^{(k-1)}) \ast R_{k,j}^{(k-1)}$$
R.E. For FSM Language

\[R_{i,j}^{(k)} = R_{i,j}^{(k-1)} \cup R_{i,q}^{(k-1)} (R_{q,q}^{(k-1)})^* R_{q,j}^{(k-1)} \]

• We give a recursive regular expression for \(R_{i,j}^{(k)} \).
 – Base: If \(R_{i,j}^{(0)} = \{x_1, x_2, \ldots, x_m\} \), let \(r_{i,j}^{(0)} = x_1 + x_2 + \ldots + x_m \).
 – Inductive assumption: \(r_{i,j}^{(k-1)} \) denotes \(R_{i,j}^{(k-1)} \)
 \[r_{i,j}^{(k)} = r_{i,j}^{(k-1)} + r_{i,k}^{(k-1)} (r_{k,k}^{(k-1)})^* r_{k,j}^{(k-1)} \]
 – Hence \(r_{i,j}^{(k)} \) denotes \(R_{i,j}^{(k)} \).

• This construction produces \(r_{i,j}^{(k)} \) for \(k = 0, 1, \ldots, n \) from which the r.e. for the regular language recognized by M is generated. Q.E.D.
Example

- To construct $T^{(1)}$ use $r_{i,j}^{(1)} = r_{i,j}^{(0)} + r_{i,1}^{(0)} (r_{1,1}^{(0)})^* r_{1,j}^{(0)}$. Because $r_{1,1}^{(0)} = \varepsilon$ and $r_{i,1}^{(0)} = \emptyset$ for $i \geq 2$, $r_{i,j}^{(1)} = r_{i,j}^{(0)}$ and $T^{(1)} = T^{(0)}$.
Example

Using $r_{i,j}^{(2)} = r_{i,j}^{(1)} + r_{i,2}^{(1)} (r_{2,2}^{(1)})^* r_{2,j}^{(1)}$ and $(r_{2,2}^{(1)})^* = \varepsilon$, we have the following table.

$$T^{(1)} = \{ r_{i,j}^{(1)} \}$$

<table>
<thead>
<tr>
<th>i(\setminus)j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>$\varepsilon + 0 + 1$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>1</td>
<td>ε</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>\emptyset</td>
<td>0</td>
<td>\emptyset</td>
<td>1</td>
<td>ε</td>
</tr>
</tbody>
</table>

$$T^{(2)} = \{ r_{i,j}^{(2)} \}$$

<table>
<thead>
<tr>
<th>i(\setminus)j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ε</td>
<td>0</td>
<td>1+00</td>
<td>01</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset</td>
<td>ε</td>
<td>0</td>
<td>1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>$\varepsilon + 0 + 1$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>1</td>
<td>ε</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>\emptyset</td>
<td>0</td>
<td>00</td>
<td>1+01</td>
<td>ε</td>
</tr>
</tbody>
</table>
Example

- Using \(r_{i,j}^{(3)} = r_{i,j}^{(2)} \cup r_{i,3}^{(2)} (r_{3,3}^{(2)})^* r_{3,j}^{(2)} \) and \((r_{3,3}^{(2)})^* = (0+1)^* \), we have following table.
Example

\[T^{(3)} = \{ r_{i,j}^{(3)} \} \]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
i \& j & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & \varepsilon & 0 & (1+00)(0+1)^* & 01 & \emptyset \\
2 & \emptyset & \varepsilon & 0(0+1)^* & 1 & \emptyset \\
3 & \emptyset & \emptyset & (0+1)^* & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & 1(0+1)^* & \varepsilon & 0 \\
5 & \emptyset & 0 & 00(0+1)^* & 10+1 & \varepsilon \\
\hline
\end{array}
\]

- Using \(r_{i,j}^{(4)} = r_{i,j}^{(3)} \cup r_{i,4}^{(3)} (r_{4,4}^{(3)})^* r_{4,j}^{(3)} \) and \((r_{4,4}^{(3)})^* = \varepsilon\), we have following table.

\[
T^{(4)} = \{ r_{i,j}^{(4)} \}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
i \& j & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & \varepsilon & 0 & (1+00+011)(0+1)^* & 01 & 010 \\
2 & \emptyset & \varepsilon & (0+11)(0+1)^* & 1 & 10 \\
3 & \emptyset & \emptyset & (0+1)^* & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & 1(0+1)^* & \varepsilon & 0 \\
5 & \emptyset & 0 & (00+11+011)(0+1)^* & 1+01 & \varepsilon + 10+010 \\
\hline
\end{array}
\]
Example

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{i} & \text{j} & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & \varepsilon & 0 & (1+00+01)(0+1)^* & 01 & 010 \\
2 & \emptyset & \varepsilon & (0+1)(0+1)^* & 1 & 10 \\
3 & \emptyset & \emptyset & (0+1)^* & \emptyset & \emptyset \\
4 & \emptyset & \emptyset & 1(0+1)^* & \varepsilon & 0 \\
5 & \emptyset & 0 & (00+11+011)(0+1)^* & 1+01 & \varepsilon + 10+010 \\
\hline
\end{array}
\]

- Result \(r = r_{1,1}^{(5)} + r_{1,4}^{(5)} + r_{1,5}^{(5)} \) where
 \[
 r_{i,j}^{(5)} = r_{i,j}^{(4)} + r_{i,5}^{(4)} (r_{5,5}^{(4)})^* r_{5,j}^{(4)}
 \]
- \((r_{5,5}^{(5)})^* = (\varepsilon+10+010)^* = (10+010)^* \). Thus, \(r_{1,1}^{(5)} = \varepsilon \). Also, \(r_{1,4}^{(5)} = 01+(010)(10+101)^*(1+01) \). Finally, \(r_{1,5}^{(5)} = (010)(10+010)^* \).
Properties of Regular Languages

• **Definition** A class C of languages is **closed** under an operation if applying the operation on a language in C gives another one in C.

• The **complement** \overline{L} of a language L over an alphabet Σ is the set of strings in $\Sigma^* - L$.
Properties of Regular Languages

• **Theorem** The class of regular languages is closed under
 1. Concatenation
 2. Union
 3. Kleene closure
 4. Complementation
 5. Intersection

• **Proof** 1-3 follow from definition of r.e.’s. For 4, swap accepting/rejecting states. For 5 use the identity $L_1 \cap L_2 = (\overline{L_1} \cup \overline{L_2})$
Pumping Lemma

• **Theorem** Let L be a regular language recognized by an FSM M with m states. If w is a string accepted by M and $|w| \geq m$ then there are strings $r, s, t \in \Sigma^*$ with $|s| > 0$ and $|rs| \leq m$ such that $w = rst$ and for all $n \geq 0$, $rs^n t$ is also accepted by M.

• **Remark:** If $|w| \geq m$, $w = rst$, then L is infinite and contains $rt, rst, rsst, rssst, \ldots$. L contains a string pumped down (rt) and those pumped up.
Proof Let $k = |w|$. Then w takes M through states q_0, q_1, q_2, ..., q_k. Since this sequence has $k+1$ states and $k \geq m$, by the pigeon-hole principle, some state of M is repeated. Let q' be first repeated state. Let r take M from q_0 to q' and let s take M from the first to second instance of q'. $|rs| \leq m$ because no state other than q' is repeated. Let t be the rest of w. Since M accepts w, it also accepts $rs^n t$ for any $n \geq 0$.

Remark We can pump between any repeated states.
Applications of the Pumping Lemma

Lemma A: \(L = \{0^p1^p \mid p \geq 1\} \) is not regular.

Proof (by contradiction) Assume \(L \) is regular and show a contradiction. If \(L \) is regular, it can be recognized by an FSM \(M \) with \(m \) states. \(0^p1^p \) is in \(L \) for all \(p \). Apply pumping lemma for \(p \geq m \). Thus, we write \(0^p1^p = rst \).

Since \(rs = 0^k, k \leq m \leq p, s = 0^\alpha, |s| = \alpha \leq k, \) and \(\alpha > 0 \). \(rs^n t \) must also be in \(L \). With \(n = 0 \), \(L \) must contain \(0^{p-\alpha}1^p \). But this contradicts the definition of the language.

We conclude that \(L \) is not regular. That is, the machine recognizing \(L \) cannot have a finite number of states.

(What kind of machine will recognize this language?)
Another Application

Lemma B: $L = \{a^p \mid p \text{ is prime}\}$ is not regular.

Proof Suppose it is regular. Then, for some prime p, $a^p = rst$ where $|s| \geq 1$. By pumping lemma, $rs^n t$ is in L for all $n \geq 0$. Here $r = a^x$, $s = a^y$, and $t = a^z$ for integers x, y, z with $y \geq 1$. If a^{x+ny+z} is in L, then $x+ny+z$ is prime for each $n \geq 1$. However if we set $n = x+2y+z+2$, then,

$$x+ny+z = x+(x+2y+z+2)y+z$$
$$= x+xy+2y^2+zy+2y+z$$

or

$$x+ny+z = (y+1)(x+2y+z)$$

Since $(y+1)(x+2y+z)$ is not a prime, L is not regular.
More on Regular Languages

- **Lemma C1**: Let L be recognized by an m-state DFSM. L is non-empty if and only if L contains a string of length less than m.

- **Proof** Let w be a shortest string in L. If $|w| < m$, done. If $|w| \geq m$, we can use pumping lemma to shorten it, which means it wasn’t the shortest string and L is empty.
More on Regular Languages

• **Lemma C2**: Let L be recognized by an m-state DFSM. L is infinite if and only if it contains a string w of length at least m and at most $2m-1$.

• **Proof** If L contains a string of length between m and $2m-1$, it can pumped up to create an infinite set of strings. If L is infinite, consider a shortest string w of length m or more. If its length is at most $2m-1$, done. If not, by pumping lemma, it can be shortened by removal of a string of length between 1 and m. This can be repeated until string has length between m and $2m-1$.
Application of Properties

• **Lemma D**: The language $L = \{w \mid w \text{ has an equal number of 0’s and 1’s}\}$ is not regular.

• **Proof** We use the fact that the intersection of two regular languages is regular. L contains strings such as 01, 1010, 1100, 000111. The language 0^*1^* is clearly regular. If L is regular, then so is $L \cap 0^*1^*$. If $L \cap 0^*1^*$ is not regular, then L could not be regular because the intersection of two regular languages is regular. But the strings in $L \cap 0^*1^*$ are of the form 0^n1^n. Thus, $L \cap 0^*1^* = \{0^n1^n\}$, which we show in Lemma A is not regular using the pumping lemma.
Decision Problems on Reg. Langs.

• **Theorem**: There are algorithms for each of the following decision problems:

 (a) For FSM M and string w, is w in L(M)?

 (b) For FSM M, is L(M) = ∅?

 (c) For FSM M, is L(M) = Σ*?

• **Proof** (a) Decide in |w| steps by giving to M. It is in L(M) if M accepts.

• (b) From Lemma C1, L(M) = ∅ only if M does not accept any strings of length less than m, the number of states of M. There are at most |Σ|^m-1 strings to test.

• (c) Same as asking if L(M) = ∅. We answer it by constructing the complement to M and applying Lemma C1 to it.
Decision Problems on Reg. Langs.

• **Theorem**: There are algorithms for each of the following decision problems:

 • (d) For FSM’s M_1 and M_2, is $L(M_1) \subseteq L(M_2)$?
 • (e) For FSM’s M_1 and M_2, is $L(M_1) = L(M_2)$?

• **Proof** (d) This question is the same as $L(M_1) \cap L(M_2) = \emptyset$ because the only way that $L(M_1)$ is contained in $L(M_2)$ is if $L(M_1)$ is not contained in the complement of $L(M_2)$. (See Figure.) (e) If $L(M_1) = L(M_2)$, then $L(M_1) \subseteq L(M_2)$ and $L(M_2) \subseteq L(M_1)$. Apply (d) to each subproblem.
Overview

• Regular languages are described by regular expressions.
• We show that every language recognized by an FSM is regular.
• Pumping Lemma used to show that some languages not regular.
 – Can the lemma be generalized to show that a substring of length \(\leq m \) anywhere in an accepted string can be pumped?
• Conditions for a regular language to be finite or infinite.
• Algorithms for decision problems on regular languages.