CSCI 1010
Models of Computation

Lecture 14
Regular Expressions
Overview

• Review of definition of regular expressions and regular languages.
• Proof that languages defined by r.e.’s are recognized by NFSMs (equally FSMs).
Operations on Sets

• Regular expressions use **union**, **concatenation**, and **Kleene closure** on sets. Let \(L_1, L_2 \subseteq \Sigma^* \).

• Concatenation: \(L_1 \cdot L_2 = \{ uv \mid u \in L_1, v \in L_2 \} \).

 – If \(L_1 = \{10,0\} \), \(L_2 = \{aa, b\} \), \(L_1 \cdot L_2 = \{10aa, 0aa, 10b, 0b\} \)

• Powers of a set: \(L^2 = L \cdot L \), \(L^3 = L \cdot L \cdot L \), \(L^4 = L \cdot L^3 \), ...

• Kleene closure: \(L^* = L^0 \cup L \cup L^2 \cup L^3 \cup \ldots \) where \(L^0 = \{\varepsilon\} \) where \(\varepsilon \) is the empty string.

 – \(L_1^* = \{\varepsilon, 10,0,1010,100,010,00,\ldots\} \)

• Positive closure: \(L^+ = L \cup L^2 \cup L^3 \cup \ldots \)
Regular Expressions

• A regular expression (r.e.) and the associated languages are defined below.
 – \emptyset is the r.e. denoting the empty set.
 – ε (bold) denotes set $\{\varepsilon\}$ containing empty letter
 – a denotes the set $\{a\}$ for a in Σ
 – If r and s are r.e.’s denoting sets R and S, then rs, $r+s$, r^* are also r.e.’s denoting the sets $R\cdot S$, $R \cup S$, and R^*, respectively.

• E.g. The following are r.e.’s over $\{a,b,c\}$:
 – ac, ab^*, $(ab+b)^*$, $a^* + ab^*a$
Regular Languages and R.E.’s

• The languages denoted by r.e.’s are called regular languages.
 – \{0+1\}^* denotes the set of all strings over \{0,1\} which was previously denoted \{0,1\}^*.
 – What is the language \((0)(1^*)(0)+(1)\)?

• We now drop boldface on letters and assume that the meaning is understood.
Properties of Regular Expressions

1. $r \emptyset = \emptyset r = \emptyset$
2. $r \varepsilon = \varepsilon r = r$
3. $r + \emptyset = \emptyset + r = r$
4. $r + r = r$
5. $r + s = s + r$
6. $r (s + t) = rs + rt$
7. $(r + s)t = rt + st$
8. $r (s t) = (rs) t$
9. $\emptyset^* = \varepsilon$
10. $\varepsilon^* = \varepsilon$
11. $(\varepsilon + r)^* = r^*$
12. $(\varepsilon + r)^* = r^*$
13. $r^*(\varepsilon + r) = (\varepsilon + r)r^* = r^*$
14. $r^*s + s = r^*s$
15. $r (s r)^* = (rs)^*r$
16. $(r + s)^* = (r^*s)^*r^* = (s^*r)^*s^*$
Nesting Depth of a Regular Expression

• Consider r.e.s for *concatenation* (rs), *union* $(r+s)$, and *Kleene closure* (r^*).

• **Definition** The nesting depth $d(r)$ of an r.e. r is defined recursively as follows:

 - $d(r) = 0$ for $r = \varepsilon, \emptyset$, or a for some letter a.
 - $d(rs) = 1 + \max(d(r), d(s))$
 - $d(r+s) = 1 + \max(d(r), d(s))$
 - $d(r^*) = 1 + d(r)$
Regular Expressions and FSMs

Theorem Given an r.e. \(r \), there is an FSM recognizing the language denoted by \(r \).

Proof By *induction* on the nesting depth of \(r \).

Base case:
Depth is 0 for \(r = \varepsilon, \emptyset, \) or \(a \) for some letter \(a \). Each r.e. recognized by an NFSM:
Inductive Hypothesis

r.e.’s rs, $r+s$, r^* have depth one more than the maximum depth of r & s or r alone, respectively. Assume that there exist NFSMs for r and s. We construct NFSMs for rs, $r+s$, and r^*.
Concatenation *rs*

- **NFSM M for rs** uses NFSMs $M_1 = (\Sigma, Q_1, \delta_1, s_1, F_1)$ for r and $M_2 = (\Sigma, Q_2, \delta_2, s_2, F_2)$ for s.
- s_1 is *M*’s start state. F_2 are accept states of *M*.
- Insert an **ε-transition** from each final state of M_1 to the start state s_2 of M_2.
 - An ε-transition occurs on no input.
Concatenation \(rs \)

- Strings \(uv \) are in \(rs \) iff \(u \) takes \(M_1 \) to one of its accept states and \(v \) takes \(M_2 \) from its initial state \(s_2 \) to a final state of \(M_2 \). This is achieved by inserting an \(\varepsilon \)-transition between a final state of \(M_1 \) and \(s_2 \).
Concatenation

• Theorem If NFSM M_1 recognizes L_1 and NFSM M_2 recognizes L_2, then there is an NFSM M_3 that recognizes $L_1 \cdot L_2$.
Removing ε-Transitions

• To remove ε-transitions, add an edge from accept state f_j of M_1 to a state q_j of M_2 with label x if there is such an edge from s_2 to q_j of M_2.
• It follows that the new machine accepts only strings uv where u is in r and v is in s.
Union Operation $r+s$

• Goal: Construct an **NFSM M for $r+s$** from the NFSMs M_1 and M_2 for r and s.
• Let $s_0 = \text{new start state}$ for M. Insert ε-transition from s_0 to both start states s_1 of M_1 and s_2 of M_2.
• The **accept states of M** are $F = F_1 \cup F_2$.
• M can non-deterministically choose to start in M_1 or M_2. Thus, it recognizes $r+s$.
Union Operation $r+s$

- To remove ε-transitions, for $j = 1, 2$ add an edge from s_0 to state q_t of M_j with label x if there is such an edge from s_j to q_t in M_j.
- The first input causes a branch to either M_1 or M_2. Thus, M accepts only strings in $r+s$.
Union

• **Theorem** If NFSM M_1 recognizes L_1 and NFSM M_2 recognizes L_2, then there is an NFSM M_3 that recognizes $L_1 \cup L_2$.
Kleene Closure r^*

- **NFSM M for r^*** built from NFSMs M_1 for r.
- M has **new start state** s_0. M_1 has start state s_1.
- Insert ε-transition from s_0 to start state s_1.
- Insert ε-transitions from each final state of M_1 to the start state s_1 of M_1.
- **M has accept states** $\{s_0\} \cup F_1$.
- Thus, M accepts ε, all strings in r, r^2, r^3, ...
Kleene Closure r^*

- To remove ϵ-transitions, add edge from s_0 and $f \in F_1$ to state q_t of M_1 with label x if there is such an edge from s_1 to q_t in M_1.
Kleen Closure

• **Theorem** If NFSM M_1 recognizes L_1, then there is an NFSM M_2 that recognizes L_1^*.
Application of NFSM Constructions

• Construct M to recognize $r = 10^*+0$.
 – Decompose into $r = r_1r_2 + r_3$, $r_1 = 1$, $r_2 = r_4^*$, $r_3 = 0$, $r_4 = 0$.
 – Construct NFSMs to recognize
 • 0
 • 1
 • 0*
 • 10*
 • 10^*+0
NFSMs Recognizing 0, 1, 0*
NFSMs Recognizing 10* and 10* + 0

• What transitions are missing in this diagram?
DFSM Recognizing 10^*+0
Exercise

• Let $\Sigma = \{0,1,2\}$ and let L be the language over Σ that contains each string w of length 1 or more that ends with a symbol not found elsewhere in w.

• Construct an NFSM that accepts L.
Constructing an NSFM for L

• An r.e. for $L = (\Sigma-1)^*1 + (\Sigma-2)^*2 + (\Sigma-3)^*3$

• This machine is clearly non-deterministic.
Constructing a DFSM for L
Morale of this Story

• If you can define a regular language with r.e.’s, you can construct an FSM to recognize it.
• This FSM can be used to reject strings that do not conform to the definition.
Review

• Review of definition of regular expressions and regular languages.
• Proof that languages defined by r.e.’s are recognized by NFSMs (equally FSMs).