CSCI 1010
Models of Computation

Lecture 10
First NP-Complete Language
Overview

• Definitions of \textbf{NP} and \textbf{NP}-complete restated
• CIRCUIT SAT revisited
• Simulating NTM by a circuit
• Simulating the tape and control units
• Reduction of recognition of language in \textbf{NP} to computation by a circuit.
• Proof that this reduction can be done polynomial time.
• CIRCUIT SAT is \textbf{NP}-complete.
Polynomial-Time Reduction

• Definition: A polynomial-time reduction (P-time) from language $L_1 \subseteq \Gamma^*$ to language $L_2 \subseteq \Sigma^*$ is a reduction $f : \Gamma^* \rightarrow \Sigma^*$ $(x \in L_1 \iff f(x) \in L_2)$ computable by a DTM in time polynomial in the length of its input. (f P-time translates L_1 to L_2)

The Recognizer for L_1 invokes the recognizer R for L_2.

© John E. Savage
NP-Complete Language

• A language \(L \subseteq \Gamma^* \) is **NP-complete** if
 1. it is in **NP** and
 2. for every language \(L_0 \subseteq \Gamma^* \) in **NP**, there is a P-time reduction \(f_0 \) from \(L_0 \) to \(L \).

• If only 2. holds, we say \(L \) is **NP-hard**.

Recognizer for \(L_0 \) in **NP** invokes recognizer \(R \) for \(L \).

Recognizer \(R \) for \(L \)
Is $P = NP$?

• Because an NP-complete language is in NP, it can be P-time reduced to another such language.

• Thus, an NP-complete language is a “hardest” language in NP within polynomial bounds.

• If one NP-complete language recognizer requires exponential time, all do and $P \neq NP$.
 – Recall definition of a reduction.

• If one NP-complete language is in P, all are in P. That is, $P = NP$.
Circuit Satisfiability

• A one-output circuit is **satisfiable** if its inputs can be chosen so that the output is 1.

• We generalize as follows:
 – A circuit is **satisfiable** if for fixed values of its *deterministic* inputs its *nondeterministic* inputs can be chosen so that the output is 1.
 – Previously all inputs were nondeterministic.

• CIRCUIT SAT is the set of satisfiable circuits.
A First \textbf{NP}-Complete Problem

- To show that language L is \textbf{NP}-complete we must show that it is in \textbf{NP} and every language in \textbf{NP} can be reduced to L in P-time.

- Our first \textbf{NP}-complete language is CIRCUIT SAT.
A First **NP**-Complete Problem

- A language L in **NP** is specified by giving a polynomial $p(n)$ and an NTM M_L such that M_L non-deterministically recognizes L in time $p(n)$ where n is the length of the input string.

- We now give a P-time algorithm ALG that given an L_0 in **NP** produces a circuit satisfiable on input w iff $w \in L_0$. The “Yes” circuit instances of these circuits are in CIRCUIT SAT.
Simulating NTM with a Circuit

• In Lecture 7 we simulated a DTM with a circuit!
• We now simulate NTM tape & control units with circuits.
• The combined circuit is satisfiable iff on input w and with **proper choice inputs** the NTM can accept the input w.
Simulation of P-time NTM

- NTM executes \(p(n) \) steps on inputs of length \(n \).
- Control unit is an NFSM
- \(m = p(n) + 1 \) tape cells are FSMs
- To simulate by circuits unwind each cell loop.
Recall - Simulating a DFSM by a Circuit

- FSM computes $f^{(T)}$ in T cycles. **Unwind the loop!**
Simulating an NFSM by a Circuit
Modeling Tape Cells

- **Tape state** at time t:
 \[A_t = (a_{0,t}, a_{1,t}, \ldots, a_{m-1,t}) \]
 - \(a_{i,t} \) is contents of ith cell at time t.
 - Each cell holds b bits, i.e.
 \[a_{i,t} = (a_{0,i,t}, a_{1,i,t}, \ldots, a_{b-1,i,t}) \]

- **Head position at time t**:
 \[s_t = (s_{0,t}, s_{1,t}, \ldots, s_{m-1,t}) \]
 - only one 1 in \(s_t \)
Encoding of Tape Parameters

- Head movement command: $h = (h_{+1}, h_0, h_{-1})$ – only one 1
- Input to memory cell: $w = (w_0, w_1, ..., w_{b-1})$
- Output of jth cell, time t: $v_{j,t} = (v_{0,j,t}, v_{1,j,t}, ..., v_{b-1,j,t})$
 $v_{j,t} = 0$ b-tuple if head not over jth cell at time t.

© John E. Savage
• Circuit $C_{j,t}$ receives input from adjacent cells $C_{j,t-1}, C_{j-1,t-1}, C_{j+1,t-1}$ as well as w_t, s_{t-1} and h_t. It produces $a_{j,t}$, $v_{j,t}$, and s_t.
Details of Cell Circuit Design

- C_1 changes cell contents if the head is over the cell.
- C_2 moves head if head over cell
- C_3 outputs cell contents if head over cell else 0.
- $O(S)$ gates used in all cells, $S = mb$.
Output of Tape Unit

• Output of tape unit is vector OR of cell outputs. O(S) gates used here.
• All but one cell output is vector 0.
Circuit Simulating T-step NTM

- One column/time step
- Inputs to first column are initial values.
- c_j is choice input to control unit on jth step.
Size of Circuit Simulating T-step NTM

- Tape Unit: \(O(S)\) gates per time step, \(O(ST)\) total
- Control Unit: \(O(1)\) gates/time step, \(O(T)\) total
Translation to CIRCUIT SAT

• Let L be in \textbf{NP}. There is an NTM \(M_L \) that can accept every \(w \in L \) in \(p(n) \) time steps and accepts no \(w \notin L \).

• \(M_L \) description is used to construct a circuit with choice inputs that simulates \(T = p(n) \) steps of \(M_L \) on input \(w \), \(n = |w| \).

• Build circuit with output = 1 if \(q_T \) is an accepting halt state and 0 otherwise. Circuit size is \(O(1) \).

• Circuit is satisfied if and only if \(w \in L \).
Final Steps

• Given an L in NP that runs in $p(n)$ steps on accepted inputs w, $n = |w|$, we have shown that a circuit exists that is satisfiable iff $w \in L$.

• The circuit has size $O(ST)$. Since $S \leq T$, the size is $O(T^2) = O(p^2(n))$, a polynomial in n.

• Is there a program ALG running in polynomial time that prints out the circuit description?
P-Time Program to Print Circuit

A program that writes circuit simulating T steps of NTM.

First n inputs specified.

Set rest to blank.

Write one copy of CU/time step

One copy of m-cell tape/step.

One m-input OR/step.

Running time = $O(p(n))$ on RAM
CIRCUIT SAT is **NP**-Complete

- We have shown that recognition of an arbitrary language L in **NP** can be reduced in polynomial time to recognition of CIRCUIT SAT.

- Since CIRCUIT SAT is in **NP**, as shown earlier, we conclude that CIRCUIT SAT is **NP**-complete.

- Later we use this result to prove that other languages are **NP**-complete.
Review

• Definitions of NP and NP-complete restated
• CIRCUIT SAT revisited
• Simulating NTM by a circuit
• Simulating the tape and control units
• Reduction of recognition of language in NP to computation by a circuit.
• Proof that this reduction can be done polynomial time.
• CIRCUIT SAT is NP-complete.