CSCI 1010
Models of Computation

Lecture 9
Complexity Classes
Overview

• DTMs and NTMs recognize the same languages.
• Resource bounded complexity classes.
• The classes \mathbf{P}, \mathbf{NP}, and \mathbf{EXP}.
 – $\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXP}$
• Review of reductions between languages
 – From SAT to 3-SAT
• Definition of \mathbf{NP}-complete languages
• The \mathbf{P} versus \mathbf{NP} question
• Introduction to a first \mathbf{NP}-complete language
Nondeterministic TM (NTM)

• An NTM \((\Gamma, \Phi, Q, \delta, F, s)\) is a TM in which the FSM control unit has choice inputs from alphabet \(\Phi\).

• \(\delta: Q \times (\Gamma \times \Phi) \rightarrow Q \times \Gamma \times \{-1, 0, +1\}\) (halt on states in \(F\))
Deterministic Simulation of an NTM

• Given an NTM N recognizing L, can we construct a DTM D that also recognizes L?
 – Yes.

• Approach:
 – Assume that N accepts strings \(w \) in L, \(|w| = n \), in \(T(n) \) steps. Construct DTM D that tries all choice inputs of length \(\leq T(n) \) until D accepts or all choices exhausted, in which case, we reject.
Three-Tape DTM D Simulating NTM N

1. Input w put on read-only tape
2. Copy w to work tape and treat it as input tape.
3. Place next choice string c on enum tape. Initially $|c| = 0 \beta \beta \ldots$ (Try c of length 1, 2, 3, ..., i.e. 0, 1, 00, 01, 10, 11, 000, ...)
4. Read one choice input per time step and simulate N on c until all $|c|$ characters read or N accepts w.
5. If choice string exhausted, erase work tape and go to 2.
DTM D Simulating NTM N

• The above DTM D accepts each \(w \) in \(L \) in \(p(|w|) \) steps. If \(w \) not in \(L \), it never halts.

• A DTM \(D_H \) can be constructed from \(D \) that halts in \(O(2^{p(|w|)}p(|w|)) \) steps.
 – \(D_H \) puts \(p(|w|) + 1 \) special symbols, say \(# \), on blank enumeration tape. \(D_H \) can tell if the last choice sequence of length \(p(|w|) \) has been written on the tape because exactly one instance of \(# \) will remain.
 – There are \(2^{p(|w|)+1-1} \) binary strings of length \(p(|w|) \).
Nondeterminism Doesn’t Help

• It follows that nondeterminism doesn’t increase the set of languages recognized by Turing machines.

• However, it may effect the running time of a Turing machine to recognize a language.
Resource-Bounded Language Recognition

- Languages are classified by the amount of time or space needed to recognize them on a TM.
- Time always measured in terms of input length.

- \(\mathbf{P} \) and \(\mathbf{NP} \) are languages recognized in polynomial time in length of input on
 - \(\mathbf{P} \): deterministic Turing machines and
 - \(\mathbf{NP} \): nondeterministic Turing machines.
Recall The Class \mathbf{P}

- **Definition** A language $L \subseteq \Gamma^*$ is in \mathbf{P} if there is a TM M_L with tape alphabet Γ and polynomial $p(n)$ such that for every w in Γ^*
 - M_L halts in $p(|w|)$ steps and
 - M_L accepts w if and only if w is in L.
The Class \textbf{NP}

• A language $L \subseteq \Gamma^*$ is in \textbf{NP} if there is an \textbf{NTM} M_L and a polynomial $p(n)$ such that
 – M_L halts and accepts each w in L with the aid of the choice agent in $p(|w|)$ steps.
 – If w is not in L, M_L does not accept w.
 • M_L does not accept either by halting or looping.
The Class EXP

• A language $L \subseteq \Gamma^*$ is in EXP if there is a DTM M_L and an exponential function $e(n)$ such that
 – for every $w \in \Gamma^*$, M_L halts in $e(|w|)$ steps and
 – M_L accepts w if it is in L and rejects it otherwise.

• Colloquially, if L is in EXP, there exists a DTM that halts on all inputs in an exponential number of steps that accepts only strings in L.
Class Inclusions

• Previously we showed that $P \subseteq NP$.
 – Because a DTM is a restricted form of NTM, every language recognized by a TM in P is also in NP.

• The simulation given above of an NTM by DTM shows that

 $$NP \subseteq EXP$$

• It follows that

 $$P \subseteq NP \subseteq EXP$$
The Role of Reductions

• If problem A is hard to solve and we can reduce it efficiently to problem B, is B easy to solve?
 – If B has an efficient solution, let’s solve hard problem A by reducing it efficiently to B and then solving B.
 – This provides an efficient algorithm for A.
 – But since A is hard, B can’t have an efficient solution.

• Thus, if we can show that A is hard, using efficient reductions other problems can be shown hard.
The Role of Reductions

- Reductions are used to identify problems that are
 - \textbf{NP}-complete – hard to compute efficiently on serial computers.
 - \textbf{P}-complete – hard to parallelize efficiently
 - Impossible – e.g. the \textbf{Halting Problem}

- The Halting Problem – an impossible problem
 - No TM algorithm exists that can tell if another TM will halt on its input or not.
 - Once we show Halting Problem is impossible, we can do the same for other problems through reductions.
Formal Definition of a Reduction

- **Definition**: A reduction from language $L_1 \subseteq \Gamma^*$ to language $L_2 \subseteq \Sigma^*$ is a function $f : \Gamma^* \rightarrow \Sigma^*$ computable by a DTM such that $w \in L_1$ if and only if $w' = f(w) \in L_2$. (f translates L_1 to L_2.)

This Recognizer for L_1 invokes the recognizer R for L_2.

© John E. Savage

CSCI 1010 Lect 9 15
Examples of Reductions

• Simple reduction:
 – \(L_a = \{ w \mid w \in \{a,b\}^* \text{ has odd number of } a's \} \)
 – \(L_b = \{ w \mid w \in \{0,1\}^* \text{ has odd number of } 1's \} \)
 – Let \(f(a) = 1 \) and \(f(b) = 0 \).

• More complex reduction:
 – From SAT to 3-SAT.
Satisfiability (SAT)

• **Instance**: A set of **literals** \(X = \{x_1, \bar{x}_1, ..., x_n, \bar{x}_n\}\) & clauses \(C = (c_1, ..., c_n)\), \(c_i\) a subset of \(X\), no repeats

• “Yes” **Instance**: There exists an assignment to variables over \(\{0, 1\}\) such that each clause has a literal with value 1.

• **Example:**

 – “Yes” instance: \((x_1+x_2) (\bar{x}_1+x_2) (\bar{x}_1+\bar{x}_2)\)

 – “No” instance: \((x_1+x_2) (\bar{x}_1+x_2) (\bar{x}_1+\bar{x}_2) (x_1+\bar{x}_2)\)

 Note: We let + denote OR.
3-SAT

• *Instance:* Set of literals \(X = \{\tilde{x}_1, ..., \tilde{x}_n\} \) & clauses \(C = (c_1, ..., c_n) \), each \(c_i \) is a subset of \(X \), \(|c_i| \leq 3 \).

• “Yes” *Instance:* There exists an assignment to variables over \{0,1\} such that each clause has a literal with value 1.

 – Example: \((x_1 + \overline{x}_2 + x_3) (\overline{x}_1 + x_3 + x_4) (x_2 + \overline{x}_4)\)

 • Here two clauses have 3 literals and one has 2 literals
Reduction from SAT to 3-SAT

• If \(n > 3 \) replace \((y_1+y_2+\ldots+y_n)\) by a set of clauses in at most 3 literals by introducing new variables
 – E.g. Replace \((y_1+y_2+y_3+y_4)\) by \((y_1+y_2+z_\top) (z_1+y_3+y_4)\).

• Proof is by induction. Assume that it applies to \(n \) for \(n > 3 \). Show works for \(n+1 \). Replace \((y_1+y_2+ \ldots + y_n + y_{n+1})\) by \((y_1 + \ldots y_{n-1} + z_1) (\bar{z}_1 + y_n + y_{n+1})\) and apply inductive assumption on the first term since it has \(n \) variables.
Reduction from SAT to 3-SAT (cont.)

• Is the following equivalent to \((y_1+y_2+\ldots+y_n)\)?

 \[(y_1+y_2+z_1) (\bar{z}_1+y_3+z_2) (\bar{z}_2+y_4+z_3) \ldots (\bar{z}_{n-3}+y_{n-1}+y_n)\]

• \((y_1+y_2+\ldots+y_n)\) is satisfied iff \(y_j = 1\) for some \(j\).

• If \(y_1+y_2 = 1\), let \(z_j = 0\) for \(j \geq 1\).

• If \(y_r = 0\) for \(r \leq k-1\) when \(k \geq 3\) and \(y_k = 1\), let \(z_j = 1\) for \(j \leq k-2\) and \(z_j = 0\) for \(j \geq k\). Then, all clauses are satisfied.
Reduction from SAT to 3-SAT

• This is a computable reduction.

• Is it computable in polynomial time in the length of an instance on a DTM?

• A clause with t literals can be expanded in time $O(t)$ on a RAM. Thus, if the number of literals is T, expansion can be done in $O(T)$ time on a RAM and $O(T^2)$ time on DTM.
Polynomial-Time Reduction

- Definition: A polynomial-time reduction (P-time) from language $L_1 \subseteq \Gamma^*$ to language $L_2 \subseteq \Sigma^*$ is a reduction $f : \Gamma^* \rightarrow \Sigma^*$ computable by a DTM in time polynomial in the length of its input. (We say f P-time translates L_1 to L_2.)

Diagram:

- $w \xrightarrow{f} w'$
- The Recognizer for L_1 invokes the recognizer R for L_2.
- Recognizer R for L_2.

© John E. Savage
NP-Complete Language

• A language $L \subseteq \Gamma^*$ is **NP-complete** if
 – it is in **NP** and
 – for every language $L_0 \subseteq \Gamma^*$ in **NP**, there is a P-time reduction f_0 from L_0 to L.

• If only second condition holds, we say L is **NP-hard**.

![Diagram](image)

Recognizer for L_0 in **NP** invokes recognizer R for L.

Recognizer R for L
Is \(P = NP \)?

- Because an \(NP \)-complete language is in \(NP \), it can be \(P \)-time reduced to another such language.
- Thus, an \(NP \)-complete language is a “hardest” language in \(NP \) within polynomial bounds.

- If one \(NP \)-complete language recognizer requires exponential time, all do and \(P \neq NP \).
 - Recall definition of a reduction.
- If one \(NP \)-complete language is in \(P \), all are in \(P \). That is, \(P = NP \).
Circuit Satisfiability

• A **one-output circuit** is **satisfiable** if its inputs can be chosen so that the output is 1.

• We generalize as follows:
 – A circuit is **satisfiable** if for fixed values of its **deterministic** inputs, its **nondeterministic** inputs can be chosen so that the output is 1.

• CIRCUIT SAT is the set of satisfiable circuits.
 – What notation should we use for circuits?
A First NP-Complete Problem

• To show that language L is NP-complete we must show that it is in NP and every language in NP can be reduced to L in P-time.

• Our first NP-complete language is CIRCUIT SAT.

• Next time we give a P-time algorithm ALG such that, given an NTM and a polynomial time bound $p(n)$ for an arbitrary language L_0 in NP, ALG prints an instance of a circuit that is satisfiable on input w iff $w \in L_0$. The “Yes” circuit instances of these circuits form CIRCUIT SAT.
Simulating NTM with a Circuit

• Next time we design circuit to simulate the tape and control units with circuits.
• The combined circuit is satisfiable iff on input \(w \) the NTM can accept the input.
Review

- DTMs and NTMs recognize the same languages.
- Resource bounded complexity classes.
- The classes P, NP, and EXP.
 - $P \subseteq NP \subseteq EXP$
- Review of reductions between languages
 - From SAT to 3-SAT
- Definition of NP-complete languages
- The P versus NP question
- Introduction to a first NP-complete language