CSCI 1010
Models of Computation

Lecture 03
Introduction to Circuits II
Overview

• Normal Form Expansions DNF, CNF and RSE
• Vector operations
• Cyclic shifting
• Logical shifting
• Reductions between binary functions
• Decoder circuit
• Circuit complexity
Review of Normal Form Expansions

• Disjunctive normal form
 – OR of minterms. A minterm of $f : \{0,1\}^n \rightarrow \{0,1\}$ is AND of one literal (x or \overline{x}) for each variable of f.
 – E.g. $c = \overline{x}yz \lor x\overline{y}z \lor xy\overline{z} \lor xyz$ (the ANDs are implicit)

• Conjunctive normal form
 – AND or maxterms. A maxterm of $f : \{0,1\}^n \rightarrow \{0,1\}$ is OR of one literal (x or \overline{x}) for each variable of f.
 – E.g. $c = (x \lor y \lor z)(\overline{x} \lor y \lor z)(x \lor \overline{y} \lor z)(x \lor y \lor \overline{z})$
 • $C = 0$ when all inputs 0 and two of them are 0.
DNF and CNF Examples

• DNF Examples

\[x_1 \oplus x_2 \oplus x_3 = x_1 \bar{x}_2 \bar{x}_3 \lor x_1 x_2 \bar{x}_3 \lor x_1 \bar{x}_2 x_3 \lor x_1 x_2 x_3 \]
\[x_1 \lor x_2 \lor x_3 = \text{all minterms except } \bar{x}_1 \bar{x}_2 \bar{x}_3 \]
How many minterms are needed for \(x_1 \oplus x_2 \oplus ... \oplus x_n \)?

• CNF Examples

\[x_1 \oplus x_2 \oplus x_3 = (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (x_1 \lor x_2 \lor \bar{x}_3) \]
\[x_1 x_2 x_3 = \text{all maxterms except } (x_1 \lor x_2 \lor x_3) \]
How many maxterms are needed for \(x_1 \oplus x_2 \oplus ... \oplus x_n \)?
Ring Sum Normal Form Expansion

- **Ring sum normal form (RSE)** is the sum (Exclusive OR) of 1 or 0 and products (AND) of un-negated variables.
 - E.g. \(f(x,y,z) = 1 \oplus x \oplus xy \oplus yz \)

- To produce RSE from DNF expand the minterms using the identity \(\overline{x} = (1 \oplus x) \)
 - E.g. \(x\bar{y}z = x(1 \oplus y)z = xz \oplus xyz \)
Size of Normal Form Representations

• In DNF n-input vector XOR $x_1 \oplus x_2 \oplus \ldots \oplus x_n$ requires 2^{n-1} minterms.
 – Each minterm uses (n-1) 2-input ANDs and $\leq n$ NOTs.
• In RSE normal form it only requires n-1 XORs, \oplus!
• In RSE vector OR, $x_1 \lor x_2 \lor \ldots \lor x_n$, requires all products (ANDs) in 1 or more variables
 – E.g. $x_1 \lor x_2 \lor x_3 \lor x_4 = x_1 \oplus x_2 \oplus x_3 \oplus x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 \oplus x_1 x_2 x_3$
 – Thus, the RSE of $x_1 \lor x_2 \lor \ldots \lor x_n$ has 2^{n-1} products!
Other Vector Operations

\[\mathbf{u} = (u_1, u_2, ..., u_n), \quad \mathbf{v} = (v_1, v_2, ..., v_n) \]

AND

\[\mathbf{u} \land \mathbf{v} = (u_1 \land v_1, u_2 \land v_2, ..., u_n \land v_n) \]

OR

\[\mathbf{u} \lor \mathbf{v} = (u_1 \lor v_1, u_2 \lor v_2, ..., u_n \lor v_n) \]

NOT

\[\neg \mathbf{u} = (\bar{u}_1, \bar{u}_2, ..., \bar{u}_n) \]

EQUAL

\[\mathbf{u} \star \mathbf{v} = 1 \text{ if } u_j = v_j \text{ for all } 1 \leq j \leq n, \text{ else } = 0 \]

\[\land: \{0,1\}^{2n} \rightarrow \{0,1\}^n, \quad \lor: \{0,1\}^{2n} \rightarrow \{0,1\}^n, \]

\[\neg: \{0,1\}^n \rightarrow \{0,1\}^n, \quad \star: \{0,1\}^{2n} \rightarrow \{0,1\} \]
Some Notation

• Binary number system:
 \[s = (s_{k-1}, s_{k-2}, \ldots, s_0) = s_{k-1} s_{k-2} \ldots s_0 \] represents the integer \[|s| = s_{k-1} 2^{k-1} + s_{k-2} 2^{k-2} + \ldots + s_0 2^0 \]

• Example:
 \[s = 101_2 \] represents \[5_{10} = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 \]

• Modular arithmetic
 \[x \ mod \ n \] is remainder after division by n.
 \[0 \ mod \ 3 = 0, \ 1 \ mod \ 3 = 1, \ 2 \ mod \ 3 = 2, \]
 \[3 \ mod \ 3 = 0, \ 4 \ mod \ 3 = 1, \ 5 \ mod \ 3 = 3, \text{ etc.} \]
Cyclic Shifting

cyclic shift left 3 places

\[s = 011_2, \ |s| = 3_{10} \]

- **Inputs** \(u = (u_{n-1}, u_{n-2}, ..., u_0), \ s = (s_{k-1}, s_{k-2}, ..., s_0) \)
- **Output** \(v = (v_{n-1}, v_{n-2}, ..., v_0) \) where \(v \) is \(u \) shifted left cyclically by \(|s| \) positions where
 \[|s| = s_{k-1}2^{k-1} + s_{k-2}2^{k-1} + s_12^1 + s_0. \]
 Thus,
 \[v_j = u_{(j-|s|) \mod n} \text{ for } 0 \leq j \leq n-1. \]
- \(f_{cyclic} : \{0,1\}^{n+k} \rightarrow \{0,1\}^n, \ v = f_{cyclic}(u, s) \)
Cyclic Shifting Algorithm

- Since $|s| = s_{k-1}2^{k-1} + ... + s_12^1 + s_0$, for $0 \leq j \leq n-1$ we can realize $f_{cyclic}(u, s)$ by cyclic shifting u by 0 positions when $s_j = 0$ or 2^j positions when $s_j = 1$.
Cyclic Shifting Implementation

• One step of cyclic shifting

• **Theorem** \(f_{cyclic} : \{0,1\}^{n+k} \rightarrow \{0,1\}^n \) can be realized by a circuit with \((3n+1)k \) gates and depth \(2k+1 \) where \(k = \lceil \log_2 n \rceil \).
Logical Shifting

- Logical shifting function $f_{\text{logic}} : \{0,1\}^{n+k} \rightarrow \{0,1\}^n$ drops high order bits and inserts 0s.
Reductions

- Can cyclic shift (A) be reduced to logical shift (B)?
 - That is, can we use a logical shift function to compute the cyclic shift function?
- Can logical shift (A) be reduced to cyclic shift (B)?
 - That is, can we use a cyclic shift function to compute the logical shift function.
- Reduction: Let functions A and B be on \(n \) and \(m \) inputs. Can we assemble the inputs to B from those of A and process B’s outputs quickly so that outputs of A can be extracted?
Shift Reductions

• Can we do **logical shifting** using **cyclic shifting**?
 – How do we prepare inputs of logical shifter to compute the results of cyclic shifter?
 – Can we repeat the inputs?
 – Can we ignore some outputs?

• Can we do **cyclic shifting** using **logic shifting**?
 – Will a similar approach work here?
Reducing Multiplication to Squaring

• If we don’t have a multiplier, we can multiply x and y, where \(|x|, |y| \leq 2^{n-1}\) and \(n \geq 2\) by squaring \(z\) where \(z=x+cy\), \(c = 2^{2n-1}\), a constant, when \(x, y,\) and \(z\) are represented in binary.
 – \(z^2 = x^2+2cxy+(cy)^2\). Thus, \(x^2 < 2cxy < (cy)^2\) if \(x,y \geq 1\).
 – Thus, the bits of \(x^2, 2cxy,\) and \((cy)^2\) don’t overlap.
 – \(xy\) can found in bit positions \(2n, 2n+1, \ldots, 3n\) of \(z^2\).
 – Algorithm to create inputs, extract outputs is fast!

• If multiplication were hard, so must be squaring!
Circuit Size Complexity

• **Definition:** The circuit complexity of a binary function \(f : \{0,1\}^n \rightarrow \{0,1\}^m \) over the basis \(\Omega \), denoted \(C_\Omega(f) \), is the size of the smallest circuit for \(f \) using functions from \(\Omega \).

 – For \(f_{cyclic} : \{0,1\}^{n+k} \rightarrow \{0,1\}^n \),
 \[
 C_\Omega(f_{cyclic}) \leq (3n+1)k, \quad k = \lceil \log_2 n \rceil
 \]
Circuit Depth Complexity

• **Definition:** The **depth complexity** of a binary function \(f : \{0,1\}^n \rightarrow \{0,1\}^m \), denoted \(D_\Omega(f) \), is the length of the longest path in a circuit for \(f \) over \(\Omega \) for which the longest path is shortest.

 – For \(f_{\text{cyclic}} : \{0,1\}^{n+k} \rightarrow \{0,1\}^n \), \(D_\Omega(f_{\text{cyclic}}) \leq 2k+1 \)
Decoder Circuits

- Decoder has \(n \) binary inputs, \(2^n \) binary outputs.
- One output has value 1 and the rest are 0.
 - \(y_j(x_3, x_2, x_1, x_0) = 1 \) only if \((x_3, x_2, x_1, x_0)\) is \(j \) in binary.

E.g. \(y_5(x_3, x_2, x_1, x_0) = 1 \) only when \((x_3, x_2, x_1, x_0) = (0, 1, 0, 1)\)
Decoder Circuits

• Decoder function $f_{dec}^{(n)} : \{0,1\}^n \rightarrow \{0,1\}^m$, $m=2^n$.

• Let $y = f_{dec}^{(n)} (x)$.
 – Then, $y_j = 1$, when $j = |x|$, and $y_j = 0$, otherwise.

• In general, $y_{|x|} = |x|$th minterm on x.
 – E.g. for $n = 2$, $y_3 = x_1 x_0$, $y_2 = x_1 \overline{x}_0$, $y_1 = \overline{x}_1 x_0$, $y_0 = \overline{x}_1 \overline{x}_0$
 – Because each minterm uses $\leq (2n-1)$ ANDs and NOTs, $C_\Omega(f) \leq (2n-1) \cdot 2^n$.

• Since each output function is different, $C_\Omega(f) \geq 2^n$.
 • Note: Good upper & lower bounds help determine circuit size.
Big Oh Notation for Functions

• Let $N = \{0,1,2,3,4, \ldots \}$. Given functions $f : N \to N$, $g : N \to N$, the values of f and g on input n are $f(n)$ and $g(n)$.

• **Definition** $f(n) = O(g(n))$ if there exist $K > 0$ and n_0 in N s.t. for $n \geq n_0$, $f(n) \leq K \cdot g(n)$.
Efficient Decoder Circuit

- A minterm on n inputs is AND of two minterms on $n/2$ inputs, e.g. $x_3 \overline{x_2} x_1 x_0 = (x_3 \overline{x_2})(x_1 x_0)$

$$C_\Omega(f_{dec}^{(n)}) \leq 2^n + 2 C_\Omega(f_{dec}^{(n/2)}) \leq 2^n + 4(n-1) 2^{n/2} = O(2^n)$$
Construction of Other Circuits

• See Chapter 2 of book for efficient circuits for
 – Encoder – one of 2^n inputs is 1, output is its index
 – Prefix comp. – $f(x_1, \ldots, x_n) = (x_1, x_1 \odot x_2, \ldots, x_1 \odot x_2 \ldots \odot x_n)$
 \odot is associative. Used in addition, parallel computation
 – Binary arithmetic functions
 – Symmetric functions (counting, e.g.)
 – Multiplexer – select one of 2^n inputs
 – Demultiplexer – move one input to one of 2^n outputs
Challenge Assignment

• Show that $f(x_1, x_2, ..., x_n) = x_1 \land x_2 \land ... \land x_n$ requires at least $n-1$ two-input ANDs and has depth at least $\lceil \log_2 n \rceil$.

• That is, $C_\Omega(f) \geq n-1$ and $D_\Omega(f) \geq \lceil \log_2 n \rceil$.
Upper Bounds to Circuit Complexity

• For the AND of n inputs, the following upper bounds apply:
 – $C_\Omega(f) \leq n-1$. Thus, $C_\Omega(f) = n-1$
 – $D_\Omega(f) \leq \lceil \log_2 n \rceil$. Thus, $D_\Omega(f) = \lceil \log_2 n \rceil$.

• What upper bounds apply to arbitrary Boolean functions?
General Upper Bounds

• What about $C_{\Omega}(f)$ and $D_{\Omega}(f)$ for arbitrary $f: \{0,1\}^n \rightarrow \{0,1\}$?

• Use DNF to construct a logic circuit.
 – f has 2^n minterms; they are generated by the decoder function $f_{dec}^{(n)}$ where $C_{\Omega}(f_{dec}^{(n)}) = O(2^n)$
 – Since f‘s minterms can be combined using at most 2^n-1 ORs, $C_{\Omega}(f) = O(2^n)$

• This bound can be improved to $C_{\Omega}(f) = O(2^n/n)$
General Lower Bound

• When $0 < \epsilon < 1$ and n is large enough at least a fraction $1 - 2^{-d}$ of functions $f: \{0,1\}^n \rightarrow \{0,1\}$, with $d = \epsilon 2^{n-1}$, $\epsilon > 0$ small, have

$$C_\Omega(f) \geq \left(\frac{2^n}{n}\right)(1-\epsilon) - 2n^2.$$

• Most n-input Boolean functions are complex and have $C_\Omega(f) \approx \frac{2^n}{n}$
Review

- Normal Form Expansions DNF, CNF and RSE
- Vector operations
- Cyclic shifting
- Logical shifting
- Reductions between binary functions
- Decoder circuit
- Circuit complexity