Lecture 8 - Turing machines

Example: DFA for 0^*1^*

\[
\begin{array}{c}
\text{start} \\
\rightarrow \\
\downarrow \\
q_1 \\
\rightarrow \\
\downarrow \\
q_{accept} \\
\rightarrow \\
\downarrow \\
q_{reject}
\end{array}
\]

TM: * Intuition
* Examples: 0^*1^*, $\{0^n1^n\}$
* Definitions
 - TM, its computation, its language

TM for 0^*1^*:

A TM is allowed to move forward and backward through its input, and also overwrite its input.

Omitting a symbol means we leave the symbol unchanged.

$0 \rightarrow 0, R$ is the same as $0 \rightarrow R$.

Main differences from a DFA:
* can go right and left
* can write over input symbols
* have an infinite amount of tape available (to the right of the input).

(If there's a transition missing, by convention, we reject.)
A TM for On^1:

Idea: Match every 0's with a 1 and cross out pairs. If there's nothing left after matching all pairs, accept.

Model of TM:

```
    TM control
       ←→
        ↑
   input  blank space
```

Back to On^1:
- Cross out a 0 (also, take care of 0's and 1's)
 - Skip over any 0's and 1's to find a 1 to cross out
 - If none found, reject
 - Hop back to the leftmost 0
 - If none found, skip over 1's to see if any 0's or 1's remain— if none, accept; else reject
 - Cross out the leftmost 0, go to 0

States:

- q_{start}: just started
 - If see U, accept
 - If see 1, reject
 - Else, cross out 0, move right

- q_1: just crossed out a 0; skip ahead until find a 1.

- q_2: just crossed out a 1, hop back until find \varnothing

- q_3: looking for leftmost 0.

- q_4: no more 0's left, skipping ahead to see if we have any more 0's or 1's
 - If yes, reject; else accept

Note: \varnothing and 1 are symbols in the tape alphabet; we can do this without these symbols, but that comes later.
Note: Input alphabet doesn't contain \(\omega \). Also, \(\omega \) takes up a space, while \(\epsilon \) doesn't.

State diagram:

Step 1: 0 0 0 1 1 1 1 ...

\(q_{\text{start}} \)

Step 2: 0 0 0 1 1 1 1 ...

\(q_1 \)

Step 3: 0 0 0 1 1 1 1 ...

\(q_1 \)

etc.

Is there a bug in this TM? We think there isn't.
Formal definition:

A Turing machine is a 7-tuple: \((Q, \Sigma, \Gamma, s, q_0, q_A, q_R)\).

1. Finite set of states
2. \(\Sigma\) : finite alphabet for the input, \(\Sigma \neq \emptyset\)
3. \(\Gamma\) : finite tape alphabet \(\Sigma \subseteq \Gamma\), \(w \in \Gamma\)
4. \(S: \mathcal{Q} \times \Gamma \rightarrow \mathcal{Q} \times \Gamma \times \{L, R\}\)
5. \(q_0, q_A, q_R\) are start, accept, and reject states, respectively.

A configuration \(C\) of a TM \(M\) is a triple \(\langle q, i, u \rangle\),

where \(q \in Q\), \(i\) is an index, and \(u\) is a string over \(\Gamma\).

\((q, i, u)\) means

This is a snapshot before it takes the transition.

Another way to describe a configuration \(C\):

Split up \(u = x_1 y\): \(x\) - first \(i-1\) symbols of \(u\), \(y\) - rest.

Write \(C = x q y\)
(Minimal description of C is one in which the blanks to the right of the last non-blank symbol of y are omitted.)

Consider a configuration $u_{aq}ibv$, where $a, b \in \Gamma, iv$ strings over Γ. We say $u_{aq}ibv$ yields $u_{aq}acv$ for $c \in \Gamma$ if $\delta(q_i, b) = (q_j, c, L)$. Similarly, $u_{aq}ibv$ yields $uacqv$ if $\delta(q_i, b) = (q_j, c, R)$.

q_{ibv} yields q_{acv} if $\delta(q_i, b) = (q_j, c, L)$

u_{aq} is equivalent to $u_{aq};L$, and yields whatever $u_{aq};L$ yields.

Start configuration: $\exists w$ for $w \in \Sigma^+$

Accept config: $x\text{accept } y$ for any x, y

Reject config: $x\text{ reject } y$ for any x, y

A TM M accepts w if \exists Configs C_0, C_1, \ldots, C_k of M s.t. C_0 is the start config of M on w, C_i yields C_{i+1} for $0 \leq i \leq k-1$, and C_k is an accept config.

For rejecting w, just replace accept with reject above.

Def. Let M be a TM. Then $L(M) = \{w \mid M \text{ accepts } w\}$

Question: Is $L(M) = \{w \mid M \text{ rejects } w\}$?

Answer: No. TMs can loop forever.
Def: M is a decider if $\forall w$, M either accepts or rejects w.

If M is a decider, $L(M) = \{ w \mid M$ rejects $w \}$.

Def: A language L is Turing-recognizable if $L = L(M)$ for some TM M.

Def: L is decidable if $L = L(M)$ for some decider M.

Church-Turing Thesis: anything that can be programmed can be programmed on a TM.

Example of an undecidable language:

$A_{TM} = \{ \langle M, w \rangle \mid M$ is a description of a TM, w is a description of its input, and M accepts $w \}$

A_{TM} isn't even Turing-recognizable.