Closure Thms:
- Regular languages are closed under \(U \), \(\ast \)
- Also closed under complement, \(L \) is regular \(\Rightarrow L^c \) is regular
- Also closed under \(\cap \), same \(F \) as \(U \), but with different \(F \)

Languages to consider:
- \(L_1 = \{ w \mid |w| \text{ is prime} \} \)
- \(L_2 = \{ w \mid w = 0^n1^n \text{ for some } n \geq 0 \} \)
- \(L_3 = \{ u \mid w \text{ has an equal } \# \text{ of } 1s \text{ and } 0s \} \)
- \(L_4 = \{ w \mid w \text{ has an equal } \# \text{ of } (01) \text{ and } (10) \} \)
- \(L_5 = \{ w \mid w = a^a \text{ for some } a \} \)
- \(L_6 = \{ w \mid w \text{ is a binary prime integer} \} \)

Thm: \(L_1 \) is not regular

Pf: We prove via contradiction.

Suppose \(L_1 \) is regular. Let \(M \) be its DFA.

Let \(m \) be the \# of states in \(M \). Let \(\eta \)
be a prime \(s.t. \), \(\eta \geq m \).

Let \(\delta \) be any \(n \)-bit string. Then, \(\delta \in \mathcal{L}(M) \).

Consider the computation history of \(\delta \) on \(M \):

\[
\delta \rightarrow \delta_0 \rightarrow \delta_1 \cdots \delta_n \rightarrow F
\]

\(2 \eta + 1 \) states in sequence, but only \(m \) distinct states.

So, for some \(j < k \leq n \), \(\delta_j = \delta_{j+1} = \delta_{j+2} \).

Let \(W = xyz \) s.t.

1. \(|xy| \leq m \)
2. \(|y| \geq 1 \)
3. \(xy^iz \in \mathcal{L}(M) \text{ } \forall i \geq 0 \)
Then, as we have seen, $W = xyz$, and we can use 1, 2, 3.
Let $l_x = |x|$, $l_y = |y|$, $l_z = |z|$

Consider $W' = \overbrace{xyy...yz}^{\text{y repeated } l_y + l_z}$

$W' \in L(M)$ by 3

$|W'| = l_x + l_y(l_x + l_z) + l_z = (1 + l_y)(l_x + l_z)$

So $|W'|$ is not prime, $W' \notin L(M)$. Contradiction.

Thm: L_2 is not regular.

PF: Suppose L_2 is regular. Let M be its DFA.
Let m be the # of states in M. Consider $W = 0^m 1^m$

Then $W \in L_2$, and M accepts W. Then, as we have seen, $W = xyz$ and we can use 1, 2, 3.

$W = xyz$

So, y must contain only 0s. Let $|y| = l_y$

Consider $W' = xz = 0^{m-l_y} 1^m$

But, $m - l_y \neq m$ by 3. So, $|l_z = 1 |$

So, $W' \notin L_2$ and $W' \notin L(M)$. Contradiction.

Pumping Lemma: Let L be a regular language, then \exists some int, m s.t. and $W \in L$, $|W| \geq m$, $W = xyz$ s.t.

1. $|xy| \leq m$ (m is called the pumping length)
2. $|y| \geq 1$
3. $xyz \in L \ y$ repeated l times

PF: Identical to sub-proof in the proof that L_1 is not regular on the first page.
Thm: \(L_5 \) is not regular. Let \(m \) be its regular pumping length:

\[
W = 0^m10^m1
\]

- Then, since \(|W| \geq m\), \(W \) can be split into \(x, y, z \) s.t. the pumping lemma applies:

\[
W = xyz
\]

- First \(m \) symbols, by (1)

\[
x'y = 0^y \text{ for } y \geq 1 \text{ by (2)}
\]

\[
y = 0^1 \text{, but } W' = 0^{m-1}0^m1 \notin L \text{, contradiction.}
\]

- One approach: Pumping Lemma.
 - Pick a string to pump
 - Show that a contradiction occurs

\(0^m10^m \) is a good candidate string.

Another approach:

- Suppose \(L_5 \) were regular, consider \(L = L_5 \setminus \{0^m1\} \)

- \(L \) must be regular \(\text{as regular languages are closed under } \setminus \)

But, \(L \neq L_5 \), which is not regular. Contradiction.

Stronger Pumping: Let \(L \) be a regular language then \(\exists \) some int. \(m \)

- S.t. \(\forall u \in L, |u| \leq m, \forall \text{ substrings } u \) or \(u' \in L, \)

\[
W = uVu_2 \rightarrow u = xyz
\]

- \(|xy| \leq m \)
- \(|y| \geq 1 \)
- \(\forall \text{ repeated } \)

\[
L \text{ times}
\]
Thm: L_b is not regular

PF: Suppose it were, let m be its pumping length.

Consider $p = a^{2^{m+1}} + 1$ (exists by Dirichlet’s Thm).

Binary rep. of p: \[a \overbrace{00\ldots 01}^{m \text{ binary (in } 0s)} \]

by the strong pumping lemma, can set

$w = v_1 u v_2$, and

Then $u = x y z$, all 0s, so

$v_1 x y^k z \in L_b$

\[= a^{0\ldots 01} \]

\[q = a^{2^{m+k} + 1} \quad \text{let } k = p - 1 \]

\[= a^{2^{m+2k} + 1} \]

\[= (p-1)2^{k} + 1 \]

\[= p \cdot 2^{k} - (2^{k-1}) \]

Contradiction!