Recap: regular languages
- DFAs
 - \(L \) is regular if \(L = L(M) \), \(M \) a DFA
- NFAs
 - Equivalence Theorem: \(\forall \text{NFAs} \ N, \exists \text{a DFA} \ M \ \text{s.t.} \ L(N) = L(M) \)
 - Closure Theorem

Today: regular expressions

Proof idea for equivalence theorem:

Given an NFA \(N = (Q_N, \Sigma, S_N, q_0, F_N) \), construct a DFA

\[M = (Q_M, \Delta, \Sigma, S_m, q_m, F_m) \]

where

\[Q_M = \{ S | S \subseteq Q_N \}, \]
\[\delta: \text{for every } S \subseteq Q_M, a \in \Sigma, \]
\[S(S, a) = T, T \subseteq Q_N \]

\(T \) is the set of states where \(N \) can take you starting at \(q \) and reading symbol \(a \).

(Actually, \(T \) is the set of states you can get to from \(S \) after empty transitions, then \(a \), then more empty transitions)

It can be helpful to eliminate empty transitions first.

Note: a NFA converted to a DFA has an exponential number of states.

Closure theorem: If \(A, B \) are regular languages, so are \(A \cup B, A \circ B, \) and \(A^* \).
Idea: If a string \(s \) is in \(A^* \), it accepts parts of the string, which are in \(A \), then empty transitions back to the start. If it accepts the string, the string can be broken into parts which are in \(A \).

(For homework: explain correctness, but don't go overboard.)

Regular expressions: Consider \(L = \{ w \mid w \text{ begins and ends with } 0 \} \).

A regular expression for \(L \) is \((0(01)*0) \cup 0\).

\(L = \{ w \mid w \text{ has an even number of } 0 \text{'s} \} \).

Regular expression: \((1^*01^*01^*)^* \cup 1^*\)

Def: \(R \) is a regular expression over \(\Sigma \) if it is one of:

1. \(R = a \) for \(a \in \Sigma \). \(L(R) = \{ a \} \).
2. \(R = \epsilon \) (empty string). \(L(R) = \{ \epsilon \} \).
3. \(R = \emptyset \) (empty set). \(L(R) = \emptyset \).
4. \(R = (R_1 \cup R_2) \) for shorter regexes \(R_1, R_2 \). \(L(R) = L(R_1) \cup L(R_2) \).
5. \(R = (R_1 \cdot R_2) \). \(L(R) = L(R_1) \cdot L(R_2) \).
6. \(R = (R_1)^* \). \(L(R) = L(R_1)^* \).

Back to examples: \((0(01)*0) \cup 0\)

Implied concatenation.

More examples:

1. \(\Sigma = \{a, n\} \). \(R = \text{ann} \). \(L(R) = \{ \text{ann} \} \).
2. \(R = (\text{ann})^* \). \(L(R) = \{ \epsilon, \text{ann}, \text{annann}, \ldots \} \).
3. \(R = \text{ann}^\ast = \text{ann}(a^\ast) \). \(L(R) = \{ \text{ann}, \text{annann}, \text{annannann}, \ldots \} \).

(Star operates first.)
4. \(R = \text{anna} \cup \text{may} = (\text{anna}) \cup (\text{may}) \)
 (Concatenation operator before union)

5. \((\text{anna} \cup \text{may})^* = (\text{anna} \cup \text{may})(\text{anna} \cup \text{may})^*\)
 (This is just a shorthand.)

6. \(R = \text{anna} \circ \emptyset = \emptyset \subseteq L(R) : L(\text{anna}) \circ L(\emptyset) \)

7. \(R = \text{anna} \circ \emptyset = \text{anna} \)
 but no such \(w_2 \) exists.

8. \(R \circ \emptyset^* = \emptyset \)
 \(L(\emptyset^*) = \{ w \mid w \text{ is a concatenation of } 0 \text{ or more strings in } \emptyset \} \)
 and \(\emptyset \) is the concatenation of 0 strings

* \(VR, RV, R \circ V, R, R \circ R = R \)
* \(R \circ \emptyset = R, R \cup \emptyset = \text{anna} \cup \text{may} \) or may not be \(R \).

Theorem (Equivalence for regexes): \(L \) is regular iff \(L = L(R) \)
for some regex \(R \).

Proof: \(\frac{}{1. \text{ If } L = L(R), \text{ then } L \text{ is regular.}} \)
\(\frac{}{2. \text{ If } L = L(R), \text{ then } L \text{ is regular.}} \)

Proof by induction on the length of the regex.

Base case: \(R \) of type 0, 1, and 3.

Type 0:
\[\text{Type 0:} \]

Type 1:
\[\text{Type 1:} \]

Type 3:
\[\text{Type 3:} \]
Inductive step:
Type C1: \(R = R_1 \cup R_2 \). By the inductive hypothesis, \(L(C_1) \) and \(L(C_2) \) are regular, so \(L(C_1 \cup C_2) \) is regular by the closure theorem.

Type C2: Same, but with concatenation:
\(R = R_1 \cdot R_2 \). By ind. hypothesis, \(L(C_1) \) and \(L(C_2) \) are regular, so \(L(C_1 \cdot C_2) \) is regular.

Type C3: Same, but with star.

Q Generalize from an example: DFA recognizing strings in \(\{0, 1, 2\} \).

\[M = \begin{array}{c}
q_0 \to 1 \quad 2 \\
1 \to 1 \\
0 \to 2
\end{array} \]

\[L(M) = \{ w \in \{0, 1, 2\}^* \mid \sum w_i \equiv 0 \pmod{3} \} \]

Roadmap: Convert \(M \) into a GNFA (generalized NFA), where a GNFA is an automaton in which transitions are labelled with regexes, there is a unique \(q_{\text{start}} \), there is a unique \(q_{\text{accept}} \), and for any \((q, r) \) where \(q \neq q_{\text{start}} \) and \(q \neq q_{\text{accept}} \), there is a transition from \(q \) to \(r \).
GNFA accepts if there is a computation history that reaches \(q_{\text{accept}} \) by consuming elements of regular expressions on transitions.

Transition function:

\[
\begin{array}{ccc}
\text{From} & \text{To} & \text{Symbol} \\
q_{\text{start}} & q_0 & \emptyset \\
q_{\text{start}} & q_1 & \emptyset \\
q_0 & q_0 & \emptyset \\
q_1 & q_1 & 1 \\
q_1 & q_2 & 2 \\
q_1 & q_{\text{accept}} & \emptyset \\
\end{array}
\]

Removing state \(q_{\text{trip}} \):

These GNFA would accept the same strings.

We need to update the transitions between every state after removing \(q_{\text{trip}} \).