Lecture 3
Recap

DFA is 5-tuple
\[Q : \text{set of states} \]
\[\Sigma : \text{alphabet} \]
\[\delta : Q \times \Sigma \to Q \text{ transition function} \]
\[q_0 : \text{start state} \]
\[F \subseteq Q : \text{accepting states} \]

Recall \(M \) is a DFA, \(L(M) = \{w \mid M \text{ accepts } w\} \)

A Computational History (CH) of \(M \) on input \(w = w_1w_2 \ldots w_n \)
is a sequence \(r_0, r_1 \ldots, r_n \) where \(r_0 = q_0, r_i = \delta(r_{i-1}, w_i) \text{ for } 1 \leq i \leq n \)

A CH is accepting if \(r_n \in F \)

A language \(L \) is regular if
for some DFA \(M \), \(L = L(M) \)

Closure Theorem

If \(A, B \) are regular languages, then so are

1. \(A \cup B \)
2. \(A \circ B = \{w \mid w = w_1w_2 \text{ s.t. } w_1 \in A, w_2 \in B\} \)
3. \(A^* = \{w \mid w = w_1w_2 \ldots w_k \text{ for } k \geq 0, w_i \in A\} \)

These are called "regular operations"

Last time: showed how to union two DFAs. What about concatenation?

Hard to combine DFAs directly for concatenation

Need new model of computation

"sunny-side up" DFAs
Lecture 3 9/13/18

NFA

First, an example:

\[L_1 = \{ w \mid w \text{ ends in } 000^3 \} \]

Let's make a non-deterministic finite automaton, \(N \) for \(L_1 \):

\[
\begin{array}{c}
q_0 & \xrightarrow{0} & q_1 & \xrightarrow{0} & q_2 & \xrightarrow{0} & q_3 \\
\end{array}
\]

Ex: \(w = 01000 \)

CHs of \(N \) on \(w \) — only one needs to accept for \(N \) to accept \(w \)

- \(q_0, q_1, q_3 \) dies (saw 1, no transition from \(q_1 \)) — rejects
- \(q_0, q_0, q_0, q_0, q_0, q_0, q_1 \) — rejects
- \(q_0, q_0, q_0, q_0, q_1, q_2, q_3 \) — accepts

So \(N \) accepts \(w \)

Another example:

\[L_2 = \{ w \mid w \text{ is a string over } \{0, 3\}, \text{ \(|w| \) is a multiple of 2 or 3} \} \]

Let's make an NFA for \(L_2 \):

\[
\begin{array}{c}
q_0 & \xrightarrow{\varepsilon} & q_1 & \xrightarrow{\varepsilon} & q_2 & \xrightarrow{ \varepsilon, 0 } & q_3 \\
q_3 & \xrightarrow{\varepsilon} & q_5 \\
\end{array}
\]

\{ checks multiple of 2 \}

\{ checks multiple of 3 \}

Empty transition: consumes no input

Ex: \(w = 00 \)

CH of NFA on \(w \)

- \(q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_1 \) accept
- \(q_0 \rightarrow q_3 \rightarrow q_4 \rightarrow q_5 \) reject

Formal def of NFA
A NFA N is a 5-tuple, $N = (Q, \Sigma, S, q_0, F)$

- Q: finite set of states
- Σ: finite alphabet
- S: powerset of Q ($\mathcal{P}(Q)$)
- q_0: start state
- $F \subseteq Q$: accepting states

$\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)$

$\delta(q_0, \varepsilon) \subseteq \mathcal{P}(Q)$

$\delta(q, a) \equiv \mathcal{P}(Q)$

$\delta(q, \varepsilon) \equiv \{ q \}$

A CH of an NFA N on input w

is a sequence $y_1y_2...y_m$ s.t. $y_i \in \Sigma$ and $y_1y_2...y_m = w$

and a sequence $r_0, r_1, ..., r_m$, s.t.

$\begin{align*}
\delta(r_0, a) & \subseteq Q \\
\delta(r_i, \varepsilon) & \subseteq \mathcal{P}(Q) \\
\delta(r_i, a) & \subseteq \mathcal{P}(Q)
\end{align*}$

Note: Does not include the "dying" CHs

A CH is accepting if $r_m \in F$

N accepts w if \exists an accepting CH of N on w

Equivalence Theorem: Let N be NFA; there exists a DFA M

such that $L(M) = L(N)$

Another example:

NFA for binary strings that end in 010 or end in 00

\implies This would be hard to do with DFA

Now let's prove that closure thm using the equivalence thm
Proof

Let A, B be regular. Let M_A be DFA for A, M_B DFA for B.

$M_A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A)$
$M_B = (Q_B, \Sigma, \delta_B, q_{0B}, F_B)$

Want to turn into NFA for $A \cdot B$ (transitions added in purple)

Construct N as follows:

$N = \delta (Q_N, \Sigma, S_N, q_{0N}, F_N)$ where

$Q_N = Q_A \cup Q_B$

Σ same as $\delta_A(q, a) \cup \delta_B(q, a)$ if $q \in Q_A, a \in \Sigma$

$S_N(q, a) =$

$\delta_A(q, a)$ if $q \in Q_A, a \in \Sigma$

$\delta_B(q, a)$ if $q \in Q_B, a \in \Sigma$

$\delta_{A \cdot B}$ if $q \in F_A, a = \varepsilon$

$q_{0N} = q_{0A}$

$F_N = F_B$

Claim: $L(N) = A \cdot B$

Once we prove claim, it follows, by the equivalence theorem that there exists DFA M s.t. $L(M) = A \cdot B$. Then $A \cdot B$ is regular.

Proof:

1. If $w \in A \cdot B$, then $w \in L(N)$ because $w = w_1 \cdot w_2$, $w_1 \in A, w_2 \in B$

 Let $y = y_1 \ldots y_{nA} \in y_1 \ldots y_{nB}$

 $w_1 \in A$

 $w_2 \in B$

 Let $r_0, r_1, \ldots r_{nA}$ be CH of M_A on w_1 accepting, since $w_1 \in A$

 Let $r_0, r_1, \ldots r_{nB}$ be CH of M_B on w_2 and $w_2 \in B$

 So if you concatenate CHs, you get accepting CH of N on w

2. Let $w \in L(N)$, then $w = w_1 \cdot w_2$ s.t. $w_1 \in A, w_2 \in B$

 Let CH of N on w be $y = y_1, \ldots, y_{m}$

 $r = r_0, \ldots, r_m$

 $y_i = \varepsilon$ in M

 (see diagram)