Hardness of approximation

Gap problem:

- on input x, if $x \notin L$, accept
- if x is "not even close", reject
- does not matter otherwise

Ex:

- Gap-3SAT: On input a 3cnf ϕ with m clauses
 - if $\exists a_1, \ldots, a_n$ satisfy all m clauses, accept
 - if $\forall a_1, \ldots, a_n$ clauses satisfied, reject
 $\leq 7/8m$

- α-Gap-CLIQUE: On input $<G,k>$
 - if G has clique of size k, accept
 - if G's largest clique is of size $\leq \frac{k}{\alpha}$, reject

Optimization:

- on input x, output y s.t. $y \geq x$
- $\max: f(x, y) \leq f(x, z)$
- $\min: f(x, y) \geq f(x, z)$

α-Approximation:

- on input x, output y s.t. $y \geq x$
- $\max: f(x, y) \geq \frac{1}{\alpha} f(x, z)$
- $\min: f(x, y) \leq \alpha f(x, z)$

Thm: If an α-approx algorithm (poly-time) exists for \max-3SAT, then a poly-time algorithm solving α-Gap-3SAT exists as well.

Proof:

- Alg: on input a 3cnf ϕ with n variables, m clauses
 - run the α-approximation algorithm for \max-3SAT
 - get assignment a_1, \ldots, a_n that satisfies
 - $w = \left(\max \text{ possible # of clauses} / \alpha \right)$ clauses
 - If $w \geq \frac{m}{\alpha}$, accept. Else reject
Analysis:
- Runtime is polynomial because \(\alpha \)-alg is polynomial, everything else polynomial.
- Correctness:
 - if \(\phi \) has a satisfying assignment, the \(a_i \), \(i \in \text{returns returned by approx alg satisfied at least} \frac{m}{\alpha} \) clauses, so accept when it should.
 - if \(\phi \) has no assignment satisfying \(\geq \frac{m}{\alpha} \) clauses, then \(a_i \), \(i \in \text{cannot satisfy} \geq \frac{m}{\alpha} \) clauses, so reject when we should.

This is important for showing when \(\alpha \)-approx algorithms are.

Contrapositive of Thm: If \(\alpha \)-Gap-3SAT is \(\text{NP} \)-hard, then no poly-time approx alg exist for MAX-3SAT unless \(P = \text{NP} \).

From PCP thm: can't approximate MAX 3SAT any better than \(\frac{8}{9} \). I.e. no \(\frac{8}{9} - \epsilon \)-approx.

Equivalent thm for clique & for all approx/gap problem:
An \(\alpha \)-approx alg can be turned into an alg solving the corresponding \(\alpha \)-gap problem.

Lab problem 3: gap preserving reduction
from 3SAT to CLIQUE
- On input \(\emptyset \in 3\text{SAT}, \) output \(\leq k \) to CLIQUE
- \(\emptyset \) where can't sat \(\geq \frac{3}{2} + \epsilon \) of clauses
- output \(\leq k \) \(\leq \frac{3}{2} + \epsilon \) of maximum CLIQUE in \(G \)
- \(G \) is of size \(\leq \frac{k}{3} \).

Thm: \(\alpha \)-Gap-CLIQUE is \(\text{NP} \)-hard.
If there is an algorithm solving \(\beta - \text{gap-clique} \), then there is a poly-time algorithm solving \(\sqrt{\beta} - \text{gap-clique} \).

Corollary: If for some \(\beta \) there exists a poly-time algorithm for \(\beta - \text{gap-clique} \), then for any \(\varepsilon > 0 \), there is a poly-time alg for \((1 + \varepsilon) - \text{gap-clique}\).

This can be done by taking square roots of \(\beta \) some constant \(\delta \) of times.

Corollary 2: There does not exist a poly-time alg for \(\beta - \text{gap-clique} \) for any \(\beta > 1 \) unless \(P = NP \).

Example graph: 5 vertices, clique of size 3.

\[
G = (V_G, E_G)
\]

Product graph \(H = G \times G = (V_H, E_H) \)

\[
V_H = V_G \times V_G
\]

\[
E_H = \{(u, v) \mid (u_1, v_1) \in E_G \text{ and } (u_2, v_2) \in E_G \}
\]

A subgraph of \(H \) that makes a clique:

\[
\begin{array}{ccc}
1,1 & 1,2 & 1,3 \\
2,1 & 2,2 & 2,3 \\
3,1 & 3,2 & 3,3
\end{array}
\]

All 9 vertices are connected and form a clique.

\(G \) has maximum clique of size \(k \) iff \(H \) has a clique of size \(k^2 \).
proof cont.

On input $\langle G, k \rangle$,

- construct product graph H.
- run algorithm for β-gap clique on input $\langle H, k^2 \rangle$.
- return whatever it returns.

Analysis: runtime $\sqrt{}$

Correctness: if $\langle G, k \rangle \notin \text{CLIQUE}$, then $\langle H, k^2 \rangle \notin \text{CLIQUE}$, so $\sqrt{}$

If G's largest cliques of size $< \sqrt{\beta} \cdot k $,

- H's largest clique is of size $< (\sqrt{\beta} \cdot k)^2 = \beta \cdot k^2$.

 =>

 so reject $\sqrt{}$, so reject.

Therefore with a $\sqrt{\beta}$-gap clique algorithm, it can solve a $\sqrt{\beta}$-gap clique

in poly time.
Probabilistic algs

BPP, RP, coRP, ZPP

![Diagram showing the relationships between BPP, RP, NP, PSPACE, coRP, ZPP, and P.]

Possible: $P \neq BPP$ (weaker)

$ZPP \neq BPP$

$L \leq BPP$ if for some ppt TM M

$\forall x \in L \Rightarrow M \text{ accepts } x \text{ w. prob. } \geq \frac{2}{3}$

$\forall x \not\in L \Rightarrow M \text{ accepts } x \text{ w. prob. } \leq \frac{1}{3}$

Thm (Amplification of BPP):

If $L \leq BPP$, can construct a ppt TM M' so

$\forall x \in L, M' \text{ accepts } x \text{ w. prob. } \geq 1 - 2^{-|x|}$

$\forall x \not\in L, M' \text{ accepts } x \text{ w. prob. } \leq 2^{-|x|}$

Do T times and take majority answer, reduce possibility of error.