Lecture 20

SPACE \((t(n)) = \{ L \mid L \in L(M), M \text{ takes } t(n) \text{ space to decide on length } n \} \)

NSPACE \((t(n)) = \{ L \mid L \in L(M), M \text{ is an NTM takes } t(n) \text{ space} \}

SAVITCH's thm: For \(t(n) \geq n\), \(\text{NSPACE}(t(n)) \subseteq \text{SPACE}(t^2(n))\)

Lemma 1: \(\text{TIME}(t(n)) \subseteq \text{SPACE}(t(n))\)

Lemma 2: \(\text{SPACE}(t(n)) \subseteq \text{TIME}(2^{O(t(n))})\)

Pf of Savitch's thm: Let us be given \(N\), in NTM needing \(t(n)\) space to decide \(L\).

WLOG, let \(N\) have the unique accepting config. \(\# \text{accept} \# \) (also on input \(w = w_1 \ldots w_n\)). Unique starting config \(\#s_{\text{start}}w_1 \ldots w_n \# \) \(t(n)\)

WANT: deterministic procedure that, on input \(C_1, C_2\), time \(T\) determine if \(N\) can get from \(C_1\) to \(C_2\) in \(T\) steps.

\[\text{CANYIELD}(C_1, C_2, 2^c) : \]

- if \(c = 0\), check if the transition function of \(N\) allows it
- else
 - for every possible \(C\) of the form \(C_{\text{mid}}, 2^{-c}\)
 - if \(\text{CANYIELD}(C_1, C_{\text{mid}}, 2^{-c-1})\)
 - and \(\text{CANYIELD}(C_{\text{mid}}, C_2, 2^{-c-1})\)

 - reject

Analysis

- Correctness: induction on \(c\), if \(c = 0\), base case correct.
 - Inductive step also correct if possible if inductive step also exists.

Space complexity: \(S(i)\)

- if \(\text{S}(0) \leq t(n)\) for the lookup,
- for \(i \geq 1\)

\[S(i) \leq \text{constant} \cdot t(n) + S(i-1) = i \cdot \text{constant} \cdot t(n) \]

To determine if \(N\) accepts \(w\), run \(\text{CANYIELD}(\text{start}, \text{accept}, 2^{O(t(n))})\)

Need space \(S(O(t(n))) = O(t^2(n))\)

\(\checkmark\)
\[\text{PSPACE} = \bigcup_{k=0}^{\infty} \text{SPACE}(n^k) \]

\[\text{NPSPACE} = \bigcup_{k=0}^{\infty} \text{NPSPACE}(n^k) \]

By Savitch's thm, \(\text{PSPACE} = \text{NPSPACE} \)

\[\text{SATEPSPACE (last class)} \]
\[\text{NP} \subseteq \text{PSPACE} \]

One of these containments is proper:
\[P \neq \text{EXPTIME} \]

But \[P \supseteq \text{NP} \supseteq \text{PSPACE} = \text{EXPTIME} \]

True quantified boolean formula (TQBF)

\[\forall x \exists y \left[(x \land y) \land (\bar{x} \land \bar{y}) \right] \]

This is TQBF bc set \(y = \bar{x} \) to make it true.

\[\exists x \forall y \left[(x \land y) \land (\bar{x} \land \bar{y}) \right] \]

False if \(x = T, y = T \) makes statement false, same for \(x = F, y = F \)

\[\psi = Q_1 x_1, Q_2 x_2, \ldots, Q_n x_n \phi(x_1, \ldots, x_n) \]

Unquantified boolean formula.

True if \(\phi(x_1, \ldots, x_n) = T \) whenever \(x_1, \ldots, x_n \) defined according to quantifiers

if \(Q_1 = \exists \) \(\psi \) is true if \(Q_2 x_2, \ldots, Q_n x_n \phi(T, x_2, \ldots, x_n) \)

or \(Q_2 x_2, \ldots, Q_n x_n \phi(F, x_2, \ldots, x_n) \)

if \(Q_2 = \forall \) \(\psi \) is true if \(Q_2 x_2, \ldots, Q_n x_n \phi(T, x_2, \ldots, x_n) \)

and \(Q_1 x_1, \ldots, Q_n x_n \phi(F, x_2, \ldots, x_n) \)
$$\text{TQBF} = \{ \phi \mid \forall \phi \text{ is a true } \text{qbf} \}$$

Thm \(\text{TQBF} \in \text{PSPACE} \)

\(\text{TQBF} \) is \(\text{PSPACE} \)-complete

Thm \(\forall \phi \in \text{PSPACE} \), \(\phi \in \text{PTQBF} \)

(i.e. TQBF is \(\text{PSPACE} \)-hard)

How to decide TQBF using poly space?

TQBF decider: On input \(\phi \)

\[\phi = Q_1 x_1 Q_2 x_2 ... Q_n x_n \phi_0 (x_1, ..., x_n) \]

If \(Q_1 = \exists \)

let \(\phi_T = Q_2 x_2 ... Q_n x_n \phi_0 (x_1, ..., x_n) \)

let \(\phi_F = Q_2 x_2 ... Q_n x_n \phi_0 (F_1, ..., x_n) \)

accept if \(\text{TQBF decider} (\phi_T) \) or \(\text{TQBF decider} (\phi_F) \) accepts

else \(Q = \forall \)

accept if \(\text{TQBF decider} (\phi_T) \) and \(\text{TQBF decider} (\phi_F) \) accepts

In polynomial space, if \(\phi_T \) and \(\phi_F \) is not defined until it has to be run, and each recursive call reuses the same space.

Analysis

Correctness: \(\checkmark \)

Space complexity: \(n \) is \# of variables, \(m \) is size of \(\phi \)

\[S(n, m) = O(m) \]

\[S(n, m) = O(n^2 + m) \]

\[n \cdot O(n^2 + m) = O(n^2 + m) \]
Assuming TQBF is P-space complete.

Formula game:

2 players, Alice and Ernie.

Given a formula:

\[\exists x_1 \forall y_1 \exists x_2 \forall y_2 \ldots \exists x_n \forall y_n \phi(x_1, \ldots, x_n, y_1, \ldots, y_n) \]

Ernie's job is to set \(x \)'s and make \(\phi \) true.

Alice's job is to set \(y \)'s and make \(\phi \) false.

Formula Game - \(\{<x,y> | \text{Ernie has a winning strat} \} \)