Wrap-up of NP, coNP, NP-completeness

Chromatic number of a graph G is minimal number k of colors $s.t. G$ is k-colorable.

$$\text{Chromatic Num} = \exists k \geq 1 \text{ s.t. } k \text{ is } G \text{'s chromatic number}$$

$$\text{Subsets } \mathcal{P}_n = \{ \langle s, t \rangle \mid s = \{ s_1, \ldots, s_k \text{ is a set of integers written in decimal}, t \text{ is an int. set, } \exists T \subseteq s \text{ s.t. } \}$$

$$\mathcal{P}_n = \sum s \cdot t$$

$$\text{Hamiltonian Path } = \{ \langle G, s, t \rangle \mid \text{G is a directed graph s.t. } \exists \text{ a path from } s \text{ to } t \text{ that visits every vertex of } G \text{ exactly once} \}$$

$$\text{NP-SAT } = \{ \langle C, n \rangle \mid \text{C is a set of triples of literals over } n \text{ Boolean variables } x_1, \ldots, x_n, \text{ and } \exists \text{ an assignment } a \text{ on } x_1, \ldots, x_n \text{ s.t. every literal has a true and a false literal} \}$$

Chromatic Num not in NP unless something surprising happens.

NP = coNP.

Claim 1: CN (Chromatic Num) is NP-hard.

Proof: Let the CN we saw that 3SAT \leq_p 3-colorability.

Reduction: on input $\phi,$ output G.

$$+ \text{ additional vertices edges.}$$

G needs at least 3 colors, since there's a triangle. Therefore, if $\phi \in \text{3SAT, chromatic # of } G \geq 3$.
If $\phi \in 3SAT$, then $CN(G)$ is 4.

$3SAT \leq CN$ using the same reduction to compute G,

we output $(G, 3)$.

Thus, CN is NP-hard.

Claim 2: CN is coNP-hard.

Proof: Reduce from $(3SAT)^c$.

On input ϕ, compute G as in last class's reduction,

output $(G, 4)$.

Analysis: polytime, since it uses a previous reduction.

Correctness: $G \in 3SAT \Rightarrow CN(G) = 4 \Rightarrow (G, 4) \in CN$.

$\phi \notin 3SAT \Rightarrow CN(G) = 3 \Rightarrow (G, 3) \notin CN$.

Like in HW, $CN \not\in NP \Rightarrow NP = coNP$.

Claim: If $NP = NP$, then ChromaticNumber $\in P$.

Proof: If $P=NP$, we have a polytime algorithm A_k deciding k-color.

On input (G, k),

for $i = 0$ to $n = |V(G)|$,

run A_k on input (G, i).

If A_k accepts and $i = k$,

accept, else reject.

3

Clique Contest, CN with 4 colors T, F, S, N,

we can color G.
If $NP = coNP$

![Venn diagram showing $NP = coNP$ and $coNP$-hard]

To show $CN \in NP \implies NP = coNP$,

1. $NP = coNP$
2. $coNP \leq NP$

E.g., to do 2, take $L \in coNP$ and show $L \in NP$,

by giving a polytime TM for L, as follows

On input w:

1. Reduce to a P-hard language, like CN, set $w \leq G(w)$
2. Use TM deciding CN in poly time on $\langle G, w \rangle$

This gives an TM deciding L.

That $SubsetSum$ is NP-complete.

Note decimal is okay, we can reduce binary to decimal and vice-versa.

Unary $SubsetSum$ is in P.

pf: 1. $SS \in NP$. [Exercise!]
2. $3SAT \leq_P SS$.

Assume n variables, 2^n literals in clauses $C_1 \ldots C_m$

<table>
<thead>
<tr>
<th>$S_2 = \overline{x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_3 = \overline{\overline{x}}$</td>
</tr>
<tr>
<td>$S_4 = \overline{\overline{x}}$</td>
</tr>
<tr>
<td>$S_5 = \overline{x}$</td>
</tr>
<tr>
<td>$S_6 = \overline{x}$</td>
</tr>
</tbody>
</table>

Integers in S correspond to literals, and clauses correspond to variables.

If $C_1 = x_1 \lor \overline{x}_2 \lor x_3$, then integer corresponds to x_1, \overline{x}_2, x_3.
For \(l \), let last \(m \) digits be \(1 \), so each clause is satisfied.

Every variable must be either true or false so we want the first \(n \) digits to be 1.

I don't have integers that subtract by 2 from a given digit corresponding to a clause. Then just subtract one to get to \(t \), which has a 1 in each digit.

Book's idea: \(t \) has a 1 in the first \(n \) digits and 3 in the last \(m \).

Then we add integers that allow us to get to 3.

So we can just add "slack" elements of \(S \) to get each clause digit to 3.

On input \(\phi \) with \(n \) variables, \(m \) clauses, output a set \(S \) of \(2n+3m \) integers of \(n+2m \) decimal digits.

Integer \(s_{i1} \) corresponds to literal \(x_i \): it has a 1 in position \(i \) and in positions \(n+j \) if \(x_i \in C_j \).

Integer \(s_{2i+1} \) is literal \(\overline{x}_i \): \(1 \) in position \(i \) and in positions \(n+j \) if \(\overline{x}_i \in C_j \).

Integer \(s_{2i+2} \) has a 1 in position \(n+j \) and 1 in position \(n+i+j \) for \(0 \leq a \leq 2 \).

\(t \) has a 1 in first \(n \) positions, 3 in next \(n \) positions, and 1 in next \(m \) positions.
Analyze polynomial # of digits, so this is poly time.

\[\Phi \in 3SAT \implies \text{there's a satisfying assignment} \alpha_1, \ldots, \alpha_n \]

Choose elements of \(S \), \(s_i \) corresponds to \(x_i = \alpha_i \)

and the "slack" integers padding the classic digits to 3.

\[<S, t> \in 3S \]

\[<S, t> \in 3S \implies \text{exactly one slack integer is picked} \]

\[\implies \text{each clause is satisfied} \]

Also, no conflicting literals are picked.

\[\implies \text{there's a satisfying assignment} \]

\[\implies \Phi \in 3SAT \]

Theorem: Hamiltonian Path is NP-complete.

Variations on HP that are also NP-complete:

- Hamiltonian Cycle
- Undirected version of HP, HC

\[\text{ide} \]"u"

\[\varepsilon \]

\[\text{Vin } \text{ wait } \text{ wait } \text{ wait } \text{ Vin} \]

Fact:

1. HP \(\in \) NP
2. NP-hard reduction from 3SAT.

Say \(\Phi \) has \(n \) variables, \(m \) clauses.

\[\begin{array}{c}
X_1 \leftarrow r_1 \\
X_2 \leftarrow r_2 \\
\vdots \\
X_n \leftarrow r_n \\
\end{array} \]

Can only go to \(C_i \) in one direction.