End of last lecture: \(\text{EQ}_{\text{TM}} \) is undecidable

P.F. Let \(\text{DEQ} \) be a decider for \(\text{EQ}_{\text{TM}} = \{<M_1, M_2> | L(M_1) = L(CA_M)\} \).

Construct a decider \(\text{DA} \) for \(A_{\text{TM}} \):

On input \(<M, w>\):

\[
f(<M, w>) = L(M_1, M_2) \quad \text{where}
\]

\[
f(<M, w>) = L(M_1, M_2) \quad \text{where}
\]

- \(M_1 \) always accepts
- \(M_2 \) runs on \(M \) on \(w \), accepts if \(M \) accepts

Run \(\text{DEQ} \) on input \(<M_1, M_2>\), do as \(\text{DEQ} \) does

Idea: If \(M \) accept \(w \), \(M_1 \) and \(M_2 \) are equivalent.

Analysis:

- If \(<M, w> \notin A_{\text{TM}} \), \(M_1 \) and \(M_2 \) are equivalent, so \(\text{DEQ} \) accepts \(<M_1, M_2>\), so \(\text{DA} \) accepts.

- If \(<M, w> \in A_{\text{TM}} \), \(M_1 \) and \(M_2 \) aren't equivalent, so \(\text{DEQ} \) rejects \(<M_1, M_2>\), so \(\text{DA} \) rejects.

Def: (5.17 in Sipser): A function \(f: \Sigma^* \rightarrow \Sigma^* \) is computable if there exists a TM \(M \) that, on any input \(x \in \Sigma^* \), halts with \(x \) on its tape.

Def: (5.20): Let \(A, B \) be languages. We say \(A \) is mapping-reducible to \(B \), or \(A \leq m B \), if there exists some computable function \(f \) s.t. \(\forall x, x \in A \iff f(x) \in B \).

In our example, we have \(A_{\text{TM}} \leq m \text{EQ}_{\text{TM}} \).
pf of claim: Given f:

1. On input <M, w>,
 Output <M', M_2>
 where M' = "On input a, accept"
 M_2 = "On input a, Run M on w. If it accepts, accept. Else, reject."

Analysis: On previous page.

Thm (5.22): If A \leq^m B and B is decidable, then so is A.

pf: Let M_B be a decider for B.

Let M_A be as follows: function s.t. x \in A if f(x) \in B
M_A = "On input x, Compute y = f(x) \(\text{using TM } F_n \text{ that must exist because } A \leq^m B \)."

Run M_B on y.
Accept if M accepts, reject otherwise.

We claim M_A is a decider for A.
Suppose x \in A. Then y = f(x) \in B by the definition of a mapping reduction. M_B accepts y, so M_A accepts x.
Suppose x \notin A. Then y = f(x) \notin B since A \leq^m B.
Thus, M_B rejects y and so M_A rejects x.

(5.23) Corollary: If A \leq^m B and A is undecidable, then so is B.

pf: Suppose B were decidable. Then by the theorem, A is decidable. Contradiction.

Q: What if A \leq^m B and B is undecidable?
A: We can't say anything about A.

Consider the language Decider_{TM} = \{ <M> | TM M is a decider \}.
Want to show: A_{TM} \leq^m Decider_{TM}
Here is a computable function f:

"On input $<M, w>$
Output $<M', w'>$ where
$M' = " On input x,
. Run M on w, else if it accepts
 Enter an infinite loop otherwise"

To compute f, we modify M': immediately write w on the tape, change the reject state.

$\Rightarrow f$ is computable.

Correctness: Given $<M, w> \in \mathbb{A}_m$, M' always accepts,
so $<M'> \in \mathbb{D}_m$.
Given $<M, w> \notin \mathbb{A}_m$, M' always loops, so $<M'> \notin \mathbb{D}_m$.

By the corollary, \mathbb{D}_m is undecidable.

Note: $A \equiv_m B$ does not imply $B \equiv_m A$.

$A_m \equiv_m \mathbb{A}_m$:

"On input $<M, w>$
Output $<M', w'>$ where
$M' = " On input x,
. Run M on w, if it accepts accept
 Else, loop forever"

$\mathbb{H}_m \equiv_m A_m$:

"On input $<M, w>$
Output $<M', w'>$ where
$M' = " On input x,
. Run M on w, if it halts accept"

w' = w"
Let's try to relax the conditions on the theorem.

Thm (5.29): If $A \subseteq B$ and B is Turing-recognizable, then so is A.

f. Let M_3 be a TM s.t. $L(M_3) = B$.

Let M_4 be as follows:

- M_4: on input x,
 - compute $f(x) = y$.
 - run M_3 on input y.
 - accept if it accepts,
 - reject otherwise.

M_4 recognizes A: $x \in A \iff y \in B$, since f is a mapping reduction.

Then M_4 accepts y, so M_4 accepts $y \in B$, since f is a mapping reduction.

Then M_3 either rejects, so M_4 rejects x, or loops, so M_4 loops and does not accept x.

Corollary (5.29): If $A \subseteq B$ and A is not Turing-recognizable, then no TM is B.

f. Suppose B were recognizable. Then by theorem, so is A. Contradiction.

Claim: $A_{TM}^{c} \leq_{T} \text{Decider}_{TM}$.

f. Reduction f: on input (M, w) where $M' = "$ on input x,

- interpret x as an integer k,
- run M' on w for k steps,
- if it accepts, loop forever,
- else accept.

Analysis: f is computable: Think of M' as a multi-tape TM.

Correctness: If $(M, w) \geq A_{TM}^{c}$, M' accepts on all inputs.

Thus, M' is a decider, so $(M, w) \geq \text{Decider}_{TM}$.

If $(M, w) \geq A_{TM}^{c}$, $L(M) \geq e_{A_{TM}}$.

Thus, M accepts on some finite number of steps.

By the corollary, Decider_{TM} is not Turing-recognizable.
Claim: $A_{tm} \leq_m \text{EQ}_{tm}$.

 Pf: Reduction F:

 On input $\langle M, w \rangle$, output $\langle M_1, M_2 \rangle$ where

 M_1: "On input x, reject"

 M_2: "On input x,

 Run M on x, do as M does."

 Analysis: F is computable, since we've seen things like it before.

 Correctness: $\langle M, w \rangle \in A_{tm}$ \iff $L(M) = \emptyset = L(M_1)$ \iff $\langle M_1, M_2 \rangle \in \text{EQ}_{tm}$ \iff $\langle M, w \rangle \notin A_{tm}$ \iff $L(M) \neq \emptyset = L(M_2)$ \iff $\langle M_1, M_2 \rangle \notin \text{EQ}_{tm}$ \iff $E_{Q_{tm}}$ is not Turing recognizable.

 Final Thm: If $A \leq_m B$, $A^c \leq_m B^c$.

 Pf: Use the same F:

 $A_{tm} \leq_m \text{Decider}_{tm}$ \iff $A_{tm} \leq_m \text{Decider}_{tm}^c$ \iff Decider_{tm} not Turing recognizable.

 Same for $E_{Q_{tm}}$.