Lecture 11:
undecidability, Rice’s Thm

Recap:

• Atm is undecidable

Today’s examples:

• $\text{AnnAtm} = \{<M> | \text{Anna} \in L(M)\}$

• $\text{RegularAtm} = \{<M> | L(M) \text{ is regular}\}$

$\text{Atm} = \{<M, w> | \text{TM } M \text{ accepts } w\}$

Def. A language L is decidable if

1. $L = L(M)$
2. M is a decider. It halts on every input

AnnAtm

Is it Turing recognizable?

Consider a TM R:

```
  on input <M>
  - run $M$ on input "anna"
  - if $M$ accepts, accept; else, reject.
```

Analysis:

if $<M> \in \text{AnnAtm}$, then M accepts "anna", so R accepts $<M>$.

if $<M> \notin \text{AnnAtm}$, then either:

- M does not halt on input "anna", so R does not accept $<M>$, so R does not accept $<M>$.

- M rejects input "anna", so R rejects input $<M>$.

So, R accepts elements in AnnAtm and does not accept elements not in AnnAtm, as needed.

Is it decidable?

Suppose for the sake of contradiction that it is, and we have a decider D_{AnnAtm}.

Consider a decider D for Atm:

```
  on input $<M, w>$
  - compute $<M'>$, a TM s.t. $<M'> \in \text{AnnAtm}$ iff $<M, v'> \in \text{Atm}$
    - run $D_{\text{AnnAtm}}$ ($<M'>$), if it accepts, accept.
```
We now define M':

"On input S,
- Run M on W
- If it accepts, accept. Else, reject."

Analysis of D:
Suppose $\langle M, W \rangle \in \text{ATM}$. Then $\langle M' \rangle \in \text{ANM}$.
Then D'_{ANM} accepts $\langle M' \rangle$, then D accepts $\langle M, W \rangle$, as needed.

Suppose $\langle M, W \rangle \in \text{ATM}$. then $\langle M' \rangle \in \text{ANM}$.
Then D'_{ANM} rejects $\langle M' \rangle$, then D rejects $\langle M, W \rangle$ as needed.

So, D is a decider for ATM, but ATM is undecidable. This is a contradiction, so ANM is undecidable.

Regular, R is it decidable?
In use same proof structure as for ANM, but we redefine M:

"On input S
- If $S = 0^n 1^n$, accept
- Else, run M on W. If M accepts, accept. Else, reject."

First, we show that M satisfies $\langle M' \rangle \in \text{Regular}$ iff $\langle M, W \rangle \in \text{ATM}$.

Suppose $\langle M, W \rangle \in \text{ATM}$. Then M accepts W, so M' accepts all strings $\Rightarrow L(M') = \Sigma^*$, which is regular, so $\langle M' \rangle \in \text{Regular}$.

Suppose $\langle M, W \rangle \in \text{ATM}$. Then M does not accept W, so M' only accepts $S = 0^n 1^n$, so $L(M') = 0^n 1^n$, which is not regular, so $\langle M' \rangle \notin \text{Regular}$, as needed.

Analysis of D is identical, contradiction follows, so Regular is not decidable.
Rice's Thm

Let \(P \) be a set of TMs s.t.
- (0) non-trivial: \(\exists M_1, M_2 \) s.t. \(M_1 \in P, M_2 \notin P \)
- (1) \(P \) is a property of the language:
 - if \(L(M_1) = L(M_2) \), either \(M_1, M_2 \in P \) or \(M_1, M_2 \notin P \)

Then \(L = \{ \langle M \rangle | M \in P \} \) is undecidable.

PF: Let \(M_{\text{rej}} \) be a TM that always rejects. Suppose \(M_{\text{rej}} \in P \). Let \(M \in P \).

Suppose \(L \) has a decider \(D_L \). Consider a decider \(D \) for \(ATM \)
- On input \(\langle M, w \rangle \), construct \(\langle M' \rangle \), a TM such that:
 - \(M' \in P \) iff \(\langle M, w \rangle \notin ATM \)
 - Run \(D_L \langle M' \rangle \). Accept if it accepts, reject if it rejects.

Now we show \(M' \) satisfies (0).
- Suppose \(\langle M, w \rangle \notin ATM \), then \(L(M') = L(M) \). Since \(M \in P \), so is \(M' \) by (1).
- Suppose \(\langle M, w \rangle \in ATM \), then \(L(M') = L(M_{\text{rej}}) \). Since \(M_{\text{rej}} \in P \), so is \(M' \) by (1).

Analysis is nearly identical to that of \(ATM \).

Suppose \(M_{\text{rej}} \in P \). Then consider \(P \circ M_{\text{rej}} \in P \), so \(L = \{ \langle M \rangle | M \in P \} \) is undecidable \(\Rightarrow L \) is undecidable.
Examples of undecidable languages by Rice's Thm:
- $\text{Empty}_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \}$
- $\text{Finite}_{TM} = \{ \langle M \rangle \mid M \text{ accepts a finite # of inputs} \}$

Examples of undecidable languages where Rice's thm does not apply:
- $\text{EQ}_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$
- $L = \{ \langle M \rangle \mid \exists M' \text{ s.t. } M' \text{ has same # of states as } M, \text{ but } M' \neq M \text{ and } L(M') = L(M) \}$

Thm: EQ$_{TM}$ is undecidable

Proof: Suppose DEQ is a decider for EQ$_{TM}$, then here is a decider D for ATM:

```
D(M, w):
    - Construct $M_1, M_2$ s.t. $L(M_1) = L(M_2)$ if $M$ accepts $w$.
    - Run DEQ($\langle M_1, M_2 \rangle$), output what it outputs.
```

M_1: on input s
```
run $M$ on $s$
accept if $M$ accepts
reject otherwise
```

M_2: on input s
```
run $M$ on $w$
accept if $M$ accepts
reject otherwise
```