You can encode a DFA, CFG, TM in binary.

- If you get a binary string that isn't a proper def of DFA, default to interpreting as DFA that rejects everything.

So consider the language $A_{DFA} = \{ <M, w> \mid M \text{ is a DFA that accepts } w \}$

Is A_{DFA} decidable?

YES — Run M on w, accept if it acc., rej. o.w.

Is A_{CFG} decidable?

YES — Convert G to Chomsky NF.

Try every derivation of len. $2n-1$ ($n=|w|$)

If one ends in w accept, else rej.

Is A_{TM} decidable?

NO — But it is *Turing recognizable* using same template as for A_{DFA}.

Proof: Suppose A_{TM} were decidable, and let D be a decider for A_{TM}.

Then consider the TM C:

On input $<M>$,

Run D on input $<M, <M>>$
If D outputs acc, you reject.
Else, accept.

C can’t be anywhere on the table ($\text{table} = \text{TM} \times \text{TM}$).
But table is all TMs, so TM.

Alternative approach:

What does C do on input $\langle c \rangle$?

- Suppose it accepts.
 Then $D(\langle c, \langle c \rangle \rangle)$ accepts.
 But then C rejects, so C cannot accept $\langle c \rangle$.
- Suppose it does not accept $\langle c \rangle$.
 Then $D(\langle c, \langle c \rangle \rangle)$ rejects.
 Then C accepts. So C can’t accept $\langle c \rangle$. \blacksquare

What about TM^c?

NO - For any language L, if L is not decidable then we know L^c is not decidable.

(B/c if L^c were decidable we could define L as what rej. by L^c)

But is it Turing-recognizable?
NO - We know Atm is Turing-rec. So if Atm^c were Turing-rec, we could put them together and make a decider.

Inm: L is decidable iff both L and L^c are Turing-recognizable.

Suppose L is decidable, let M be a TM deciding L, then $L = L(M)$, so it's Turing-rec.
Consider M', identical to M but with q_a and q_b switched. $L^c = L(M)$, so it's Turing-rec as well.

Suppose L and L^c are Turing-rec. Let M, M' be TM's st. $L = L(M)$ and $L^c = L(M')$.
Consider D:
On input w,
\[
\begin{array}{l}
\text{Run } M \text{ on input } w \quad \text{In parallel} \\
\text{Run } M' \text{ on input } w
\end{array}
\]
If M accepts, accept.
If M' accepts, reject.