What is this class about?

- What is computation
- What is (or is not) computable?
- What is (or is not) computable given limited resources?

What is an example of something that is not computable?

> The halting problem

A Halting Problem solver (HPSolver) is a program that, on input (program P, input x) outputs "halts" if P halts on input $x" loops" otherwise

Theorem: HPSolver does not exist

Proof: Suppose it existed. Consider the program Can'tSolveMe:

Can'tSolveMe (program P):

Run HPSolver (program P, input P)

- Let status := result of HPSolver

If status = "halts" enter infinite loop
Else Halt

What if we run Can'tSolveMe (program Can'tSolveMe)?

If it halts HPSolver (Can'tSolveMe, Can'tSolveMe) returns "halts" → then Can'tSolveMe(Can'tSolveMe) loops.
If it loops, HPSolver(Can'tSolveMe, Can'tSolveMe) returns "loops" → then Can'tSolveMe(Can'tSolveMe) halts.
Lecture 1 9/6/18

What else is not computable?
- telling if programs are equivalent
- telling running time as function of input length

These things are deemed to be heuristics 😇
But useful to reason about them, and know what is/is not possible 😊

Also important for security/cryptography 😇
- In cryptography, want bad guys to be forced to solve intractable/"impossible" problems
 ex: RSA encryption based on difficulty of factoring primes

Crypto:

"good guys" run efficient algorithms
"bad guys" would have to solve an intractable problem in order to break system

Ex: RSA
- Good guys just need to multiply integers
- Bad guys need to factor them

The Most Famous Open Problem in CompSci ~

P vs NP ↓ definitions
Lecture 1
1/6/18

P vs. NP

P = {Boolean functions f | f(x) is computable in polynomial time ?}

NP = {Boolean functions f | the statement “f(x) = 1” can be verified in polynomial time using some extra information ?}

\[P \subseteq NP \]

Ex: Path (directed graph G, vertex u, vertex v):

\[\begin{cases} 1 & \text{if } \exists \text{ a path from } u \text{ to } v \text{ in } G \\ 0 & \text{otherwise} \end{cases} \]

Path \in P \rightarrow \text{You've probably done it in a programming class!}

Question: What if graph infinite? \rightarrow \text{would need diff. model of computation.}

Ex: HamPath (directed graph G, u, v):

\[\begin{cases} 1 & \text{if } \exists \text{ a path from } u \text{ to } v \text{ that also visits every other vertex of } G \text{ exactly once} \\ 0 & \text{otherwise} \end{cases} \]

HamPath \in NP \rightarrow \text{Could verify path if I told you one}

HamPath is NP-complete \rightarrow \text{Would solve P vs NP if you knew whether HamPath were in the class P}

More examples ↓
Lecture 1 9/6/18

Ex: **Course Scheduling**
- On input k non-overlapping timeslots
- List of courses
- List of students, what courses they want
- Output 1 if a schedule satisfying everyone exists

Intuition: In NP? (Seems easy to verify, also memes??)

Course Scheduling is **NP**: can verify given schedule in polytime

Ex: **Colorability**
- On input k an integer
- G an undirected graph
- Output 1 if every vertex in G such that no edge has endpoints of the same color

Intuition: In NP? (Seems like it!)

Course Scheduling is **NP**: can verify given coloring works

How do these problems relate?

Can express instance of Course Scheduling as instance of Colorability (timeslots as colors, courses as vertices, students as cliques of edges)

Colorability is **NP-complete** (as defined here)

Course Scheduling is **NP-complete**