Outline

• What is a Non-deterministic Finite State Automata
• NFA construction
• Formal Definition of NFA
• Equivalence between NFAs and DFAs
• Regular Operations
 – Closure under union
 – Closure under concatenation
 – Closure under star

From Sipser Chapter 1.2
Nondeterminism

• So far our FA is deterministic in that the state and next symbol determines the next state

• Nondeterministic Finite States Automata introduce two main differences:
 – DFAs have one transition arrow per alphabet symbol, while NFAs have 0 or more for each and \(\varepsilon \) the “empty” symbol
 – DFAs are in a specific single state at all times, while NFAs may be in multiple states
How does an NFA Compute?

• When there is a choice, all paths are followed
 – Think of it as cloning a process and continuing
 – If there is no arrow, the path terminates and the clone dies (it
does not accept if at an accept state when that happens)
 – An NFA may have the empty string cause a transition
 – The NFA accepts if any path terminate in an accepting state
 – Can also be modeled as a tree of possibilities

• An alternative way of thinking of this
 – At each choice you make one guess of which way to go
 – You magically always guess the right way to go
- Try out 010110
 - Is it accepted?
 - Yes

- What is the language?
 - Strings containing a substring of 101 or 11
Construct an NFA that accepts all strings over \{0,1\} with a 1 in the third position from the end.

Hint: the NFA stays in the start state until it guesses that it is three places from the end.
Formal Definition of NFA

A nondeterministic finite automata is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

- \(Q\) is a finite set of states
- \(\Sigma\) is a finite set called the alphabet
- \(\delta : Q \times \Sigma \epsilon \rightarrow P(Q)\) is the transition function
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of accept states

• Similar to DFA except
 - \(\Sigma\) includes \(\epsilon\)
 - The transition function matches states and symbols with a set of possible states
Example of Formal Definition of NFA

NFA N_1 is $(Q, \Sigma, \delta, q_1, F)$

- $Q = \{q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- q_1 is the start state
- $F = \{q_4\}$

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>${q_1}$</td>
<td>${q_1, q_2}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_3}$</td>
<td>\emptyset</td>
<td>${q_3}$</td>
</tr>
<tr>
<td>q_3</td>
<td>\emptyset</td>
<td>${q_4}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_4</td>
<td>${q_4}$</td>
<td>${q_4}$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Equivalence of NFAs and DFAs

• NFAs and DFAs recognize same class of languages
• What does this mean? What is the implication?
 – NFAs have no more power than DFAs
 • With respect to what can be expressed
 • Every NFA has an equivalent DFA
 • But NFAs may make it easier to describe some languages
 – Terminology: Two machines are equivalent if they recognize the same language
Compiler Equivalence

• C, C++, Python, Pascal, Fortran, ...
• Are these languages equivalent?
 – Some are more suited to some tasks, but with enough effort any of these languages can compute anything the others can
 – If necessary, you can even write a compiler for one language using another
Proof of Equivalence of NFA & DFA

Proof idea:

– Simulate an NFA with a DFA
– With NFAs, given an input we follow all possible branches and keep a finger on the state for each
– In the equivalent DFA we need to keep track of all the possible states we would be in for each of the NFA execution
– If the NFA has k states then it has 2^k possible subsets
 • Each subset corresponds to one of the possibilities that the DFA needs to remember
 • The DFA will have 2^k states
Proof by Construction

• Let $N=(Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing A

• Construct equivalent DFA $M = (Q', \Sigma, \delta', q_0', F')$

 - $Q = P(Q)$

 - Careful in handling ε!

 • Let $E(R)$ denote the collection of states reachable by members of R just following ε arrows

 - $q_0' = \{q_0 \cup E(\{q_0\}) \}$

 - $F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}$

 - Transition function

 • The state R in M corresponds to a set of states in N

 • When M reads symbol a in state R, it shows where a takes each state

 • $\delta'(R,a) = (\bigcup_{r \in R} \delta(r,a)) \cup E(R)$
Example 1.41 (pg. 57 2nd ed.)

– The NFA has 3 states: \(Q = \{1, 2, 3\} \)
– What are the states in the DFA?
 • \(\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \)
– What are the start states of the DFA?
 • Start states of the DFA correspond the collection of just the stating state of the NFA and all the states reachable via \(\varepsilon \)
 • \(\{1, 3\} \)
– What are the accept states?
 • All the states of the DFA which include an accept state of the NFA
 • \(\{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\} \)
Example: Convert an NFA to a DFA

Now lets work on some of the transitions

– Let’s look at state 2 in NFA and complete the transitions for state 2 in the DFA
 • Where do we go from state 2 on an “a” and “b”?
 – On “a” to state 2 and 3 and on “b” to state 3
 • So what state does \{2\} in DFA go to for a and b?
 – On a to \{2,3\} and \{3\} for b

– Now lets do state \{3\}
 • On “a” goes to \{1,3\} and on b goes to \emptyset
 – Why \{1, 3\}? Because first goes to 1 then \(\varepsilon\) permits a move back to 3!
Closure under Regular Operations

• We started this before and did it for Union only
 – Union much simpler using NFA
• Concatenation and Star much easier using NFA
• Since DFAs equivalent to NFAs, we can now just use NFAs
• Fewer states to keep track of because we can act as if we always “guess” correctly
Why do we care about closure?

We need to look ahead

– A regular language is what a DFA/NFA accepts
– We are now introducing regular operators and then will generate regular expressions from them (Ch 1.3)
– We will want to show that the language of regular expressions is equivalent to the language accepted by NFAs/DFAs (i.e., a regular language)
– How do we show this?
 • Basic terms in regular expression can generated by a FA
 • We can implement each operator using a FA and the combination is still able to be represented using a FA
Given two regular languages A_1 and A_2 recognized by two NFAs N_1 and N_2, construct N to recognize $A_1 \cup A_2$

How do we construct N?

- Start by writing down N_1 and N_2. Now what?
- Add a new start state and then have it take ϵ branches to the start states of N_1 and N_2
Closure under Concatenation

- Given two regular languages A_1 and A_2 recognized by two NFAs N_1 and N_2, construct N to recognize $A_1 \cdot A_2$

- How do we do this?
 - The complication is that we did not know when to switch from handling A_1 to A_2 since we can loop on an accept state
 - Solution with NFA:
 - Connect every accept state in N_1 to every start state in N_2 using an ε transition
 - Do not remove transitions from accept state in N_1 back to N_1
Closure under Concatenation

• Given:
 – \(N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognizes \(A_1 \)
 – \(N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognizes \(A_2 \)

• Construct \(N = (Q_1 \cup Q_2, \Sigma, \delta, q_1, F_2) \) so that it recognizes \(A_1 \cdot A_2 \)

\[
\delta(q,a) =
\begin{array}{|c|c|}
\hline
\delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\
\hline
\delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\
\hline
\delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\
\hline
\delta_2(q,a) & q \in Q_2 \\
\hline
\end{array}
\]
Closure under Star

• Given regular language A_1 prove A_1^* is also regular
 – Note $(ab)^* = \{\varepsilon, ab, abab, ababab, \ldots\}$
• Proof by construction
 – Take NFA N_1 that recognizes A_1 and construct N from it that recognizes A_1^*
 – How do we do this?
 • Add new ε-transition from accept states to start state
 • Then make the start state the accept state so that ε is accepted
 – This almost works, but not quite. What is the problem?
 » May have transition from intermediate state to start state and should not accept on this loop-back
 • Solution: add a new start state that is accept state, with an ε-transition to the original start state and have ε-transitions from accept states to old start state
Closure under Star

\[\varepsilon \]

Theory of Computation - Fall'19
Lorenzo De Stefani