Problem 1

Consider the following language:

\[L = \{ \langle M \rangle \mid M \text{ accepts input } \varepsilon \} \]

We wish to prove that \(L \) is undecidable. Recall that we know that

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ accepts } w \} \]

is undecidable.

Candidate Proof: Assume there exists a decider \(A \) for \(A_{TM} \). Then we construct the following decider \(D \) for \(L \): \(D \) takes input \(\langle M \rangle \) and runs \(A \) on \(\langle M, \varepsilon \rangle \), then outputs whatever \(A \) returns. Clearly, \(D \) will halt because it is only running \(A \), which is a decider. \(D \) also clearly decides \(L \), because it only returns true when \(M \) accepts \(\varepsilon \), and false otherwise. However, this is a contradiction, since \(A_{TM} \) is not decidable, so \(L \) must not be decidable.

1. What is wrong with the proof given above? Explain.
2. How would you correctly prove that \(L \) is undecidable?

Problem 2

For each of the following languages, explain why it is decidable or undecidable. If it is undecidable, explain why you can or cannot use Rice’s Theorem.
a. \(L = \{\langle M \rangle \mid M \text{ is a TM and } \text{tr}ololol \in L(M)\} \).

b. \(L = \{\langle M, w, s \rangle \mid M \text{ at some point writes symbol } s \text{ on the tape given input } w\} \)

c. \(L = \{\langle M \rangle \mid |L(M)| \leq 9000\} \)

\textbf{Problem 3}

Show that the following languages are decidable.

a. \(L = \{\langle M \rangle \mid M \text{ is a DFA and } L(M) = \emptyset\} \)

b. \(L = \{\langle M, N \rangle \mid M \text{ and } N \text{ are DFAs with } L(M) = L(N)\} \)

c. \(L = \{\langle M, N \rangle \mid M, N \text{ are DFAs such that } L(M) \subseteq L(N)\} \)

d. \(L = \{\langle M \rangle \mid M \text{ is a DFA that accepts } w \text{ whenever it accepts the reverse of } w, \text{ or } w^R\} \)

\textbf{Hint}: For some problems, you might want to consider operations on regular languages such as taking the union of two languages or the complement of a language.
The following questions are lab problems.

Lab Problem 1

In the following problem, M denotes a Turing machine. Determine whether or not each of the following languages is decidable. Justify your answer.

a. $L = \{\langle M, w \rangle \mid \text{on input } w, \text{there is a state of } M \text{ that is never visited, excluding the accept and reject states} \}$

b. $L = \{\langle M, w \rangle \mid \text{on input } w, M\text{'s head reaches the end of } w; \text{ that is, } M \text{ reads every symbol in } w \}$

c. $L = \{\langle M, w \rangle \mid \text{on input } w, \text{at each step, } M \text{ only writes the symbol already on the tape (leaving the tape unchanged) or writes the blank symbol onto the tape} \}$

Lab Problem 2

A Turing Machine is **self-terminating** if it halts when given its own description as input.

Our goal will be to prove that the language $L_{NST} = \{\langle M \rangle \mid M \text{ is not self-terminating} \}$ is undecidable.

a. Show whether or not you are able to apply Rice’s Theorem.

b. What language should you reduce from? Why?

c. Show the reduction from the language in part (b) to L_{NST}.

Hint: Create a mapping and show that it maps elements from the language in part (b) to L_{NST}, and also maps their complements.

Put all of these steps together in a formal proof, including why the Turing machine you gave in part (c) decides the language in part (b).

Lab Problem 3

So far we have learned about decidability and recognizability. In this problem, we will learn about function uncomputability.
We define a function \(f \) from \(\{0,1\}^* \to \{0,1\}^* \) to be **computable** if there exists a TM that on input \(x \) halts and accepts with the string \(f(x) \) on its tape.

We say a function is **uncomputable** if it is not computable.

We now define LOLCOMPLEXITY of a string \(x \) to be the minimum number of states of a Turing Machine that outputs \(x \) on input the empty string \(\varepsilon \). Note: the smallest possible Turing Machine does not have to be unique.

Prove by contradiction that LOLCOMPLEXITY is uncomputable. You may assume that there exist strings with arbitrarily large LOLCOMPLEXITY.

Hint: Think about the expression “the smallest positive integer that cannot be described in fewer than 100 words”. Why can’t such an integer exist?