Number of solutions to a linear system

We just proved:
If \mathbf{u}_{1} is a solution to a linear system then

$$
\{\text { solutions to linear system }\}=\left\{\mathbf{u}_{1}+\mathbf{v}: \mathbf{v} \in \mathcal{V}\right\}
$$

where $\mathcal{V}=\{$ solutions to corresponding homogeneous linear system $\}$
Implications:
Previously we asked: How can we tell if a linear system has only one solution?
Now we know: If a linear system has a solution \mathbf{u}_{1} then that solution is unique if the only solution to the corresponding homogeneous linear system is $\mathbf{0}$.
Previously we asked: How can we find the number of solutions to a linear system over GF(2)?
Now we know: Number of solutions either is zero or is equal to the number of solutions to the corresponding homogeneous linear system.

Number of solutions: checksum function

MD5 checksums and sizes of the released files:

```
3c63a6d97333f4da35976b6a0755eb67 12732276 Python-3.2.2.tgz
9d763097a13a59ff53428c9e4d098a05 10743647 Python-3.2.2.tar.bz2
3720ce9460597e49264bbb63b48b946d 8923224 Python-3.2.2.tar.xz
f6001a9b2be57ecfbefa865e50698cdf 19519332 python-3.2.2-macosx10.3.dmg
8fe82d14dbb2e96a84fd6fa1985b6f73 16226426 python-3.2.2-macosx10.6.dmg
cccb03e14146f7ef82907cf12bf5883c 18241506 python-3.2.2-pdb.zip
72d11475c986182bcb0e5c91acec45bc 19940424 python-3.2.2.amd64-pdb.zip
ddeb3e3fb93ab5a900adb6f04edab21e 18542592 python-3.2.2.amd64.msi
8afblb01e8fab738e7b234eb4fe3955c 18034688 python-3.2.2.msi
```

A checksum function maps long files to short sequences.
Idea:

- Web page shows the checksum of each file to be downloaded.
- Download the file and run the checksum function on it.
- If result does not match checksum on web page, you know the file has been corrupted.
- If random corruption occurs, how likely are you to detect it?

Impractical but instructive checksum function:

- input: an n-vector \mathbf{x} over $G F(2)$
- output: $\left[\mathbf{a}_{1} \cdot \mathbf{x}, \mathbf{a}_{2} \cdot \mathbf{x}, \ldots, \mathbf{a}_{64} \cdot \mathbf{x}\right]$

Number of solutions: checksum function

Our checksum function:

- input: an n-vector \mathbf{x} over $G F(2)$
- output: $\left[\mathbf{a}_{1} \cdot \mathbf{x}, \mathbf{a}_{2} \cdot \mathbf{x}, \ldots, \mathbf{a}_{64} \cdot \mathbf{x}\right]$
where $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{64}$ are sixty-four n-vectors.
Suppose \mathbf{p} is the original file, and it is randomly corrupted during download.
What is the probability that the corruption is undetected?
The checksum of the original file is $\left[\beta_{1}, \ldots, \beta_{64}\right]=\left[\mathbf{a}_{1} \cdot \mathbf{p}, \ldots, \mathbf{a}_{64} \cdot \mathbf{p}\right]$.
Suppose corrupted version is $\mathbf{p}+\mathbf{e}$.
Then checksum of corrupted file matches checksum of original if and only if

$$
\begin{array}{rlllllll}
\mathbf{a}_{1} \cdot(\mathbf{p}+\mathbf{e})= & \beta_{1} & & \mathbf{a}_{1} \cdot \mathbf{p}-\mathbf{a}_{1} \cdot(\mathbf{p}+\mathbf{e}) & = & 0 & \text { iff } & \mathbf{a}_{1} \cdot \mathbf{e}= \\
\vdots & & \text { iff } & & & \\
& & & & \\
\mathbf{a}_{64} \cdot(\mathbf{p}+\mathbf{e})= & \beta_{64} & & \mathbf{a}_{64} \cdot \mathbf{p}-\mathbf{a}_{64} \cdot(\mathbf{p}+\mathbf{e})= & 0 & \mathbf{a}_{64} \cdot \mathbf{e}= & 0
\end{array}
$$

iff \mathbf{e} is a solution to the homogeneous linear system $\mathbf{a}_{1} \cdot \mathbf{x}=0, \ldots \mathbf{a}_{64} \cdot \mathbf{x}=0$.

Number of solutions: checksum function

Suppose corrupted version is $\mathbf{p}+\mathbf{e}$. Then checksum of corrupted file matches checksum of original if and only if \mathbf{e} is a solution to homogeneous linear system

$$
\begin{aligned}
\mathbf{a}_{1} \cdot \mathbf{x} & =0 \\
& \vdots \\
\mathbf{a}_{64} \cdot \mathbf{x} & =0
\end{aligned}
$$

If \mathbf{e} is chosen according to the uniform distribution,
Probability ($\mathbf{p}+\mathbf{e}$ has same checksum as \mathbf{p})
$=$ Probability (\mathbf{e} is a solution to homogeneous linear system)
$=\frac{\text { number of solutions to homogeneous linear system }}{\text { number of } n \text {-vectors }}$
$=\frac{\text { number of solutions to homogeneous linear system }}{2^{n}}$

Question: How to find out number of solutions to a homogeneous linear system over $G F(2)$?

Geometry of sets of vectors: convex hull

Earlier, we saw: The \mathbf{u}-to-v line segment is

$$
\{\alpha \mathbf{u}+\beta \mathbf{v}: \alpha \in \mathbb{R}, \beta \in \mathbb{R}, \alpha \geq 0, \beta \geq 0, \alpha+\beta=1\}
$$

Definition: For vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ over \mathbb{R}, a linear combination

$$
\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

is a convex combination if the coefficients are all nonnegative and they sum to 1 .

- Convex hull of a single vector is a point.
- Convex hull of two vectors is a line segment.

- Convex hull of three vectors is a triangle

Convex hull of more vectors? Could be higher-dimensional... but not necessarily.

For example, a convex polygon is the convex hull of its vertices

Activity: Vec

You wrote the procedures in vec.py: add (u,v), scalar_mul(alpha, v), neg(v), dot(u,v)
Try writing these

- without using setitem or $\mathrm{v}[\mathrm{k}]=$...
- without doing any mutation
- without assigning more than once to any variable (aside from comprehensions)

Two kinds of functions

Focus on two kinds of functions:

- dot-product functions
- linear-combination functions

Dot-product function:

- A function is specified by some C-vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$
- Input is a C-vector \mathbf{x}
- Output is $\left[\mathbf{a}_{1} \cdot \mathbf{x}, \ldots, \mathbf{a}_{m} \cdot \mathbf{x}\right]$

Linear-combination function:

- A function is specified by some R-vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$
- Input is a list of n scalars $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$
- Output is $\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$

Example applications of dot-product function

- Cost/benefit

- $C=\{$ malt, hops, yeast, water $\}$
cost vector
$\mathbf{a}_{1}=\{$ hops : $\$ 2.50 /$ ounce, malt : \$1.50/pound, water : \$0.06/gallon, yeast : $\$.45 / \mathrm{g}\}$ calorie vector $\mathbf{a}_{2}=\{$ hops : 0 , malt : 960 , water: 0 , yeast : 3.25$\}$ input \mathbf{x} specifies quantity of each ingredient for some recipe, e.g.

$$
\mathbf{x}=\{\text { hops:6 oz, malt:14 pounds, water:7 gallons, yeast:11 grams }\}
$$

- Consumption of resources $C=\{$ radio, sensor, memory, CPU $\}$
\mathbf{a}_{1} is a vector specifying how long each hardware component is working during test period 1
\mathbf{a}_{m} is a vector specifying how long each hardware component is working during test period m
x specifies how much energy each component consumes per second, e.g. $\mathbf{x}=\{$ memory : 0.06 W , radio : 0.06 W , sensor : $0.004 \mathrm{~W}, C P U: 0.0025 \mathrm{~W}\}$ function $f(\mathbf{x})=\left[\mathbf{a}_{1} \cdot \mathbf{x}, \ldots, \mathbf{a}_{m} \cdot \mathbf{x}\right]$ maps energy consumption per component to total energy consumption per test period.

More example applications of dot-product functions

- match filter (image or audio search)
C is set of audio sample times or pixel locations
For each possible location of match, have a vector \mathbf{a}_{i}
\mathbf{x} is an digital audio recording or a digital image.
$f(\mathbf{x})=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right]$ maps \mathbf{x} to measurements of closeness of match
- Authentication
$C=\{0, \ldots, n-1\}$
Each \mathbf{a}_{i} is a challenge observed by Eve \mathbf{x} is password
$f(\mathbf{x})=\left[\mathbf{a}_{1} \cdot \mathbf{x}, \ldots, \mathbf{a}_{m} \cdot \mathbf{x}\right]$ maps \mathbf{x} to the list of responses Eve observed.

Applications of dot-product definition: Downsampling

- Each pixel of the low-res image corresponds to a little grid of pixels of the high-res image.
- The intensity value of a low-res pixel is the average of the intensity values of the corresponding high-res pixels.

Applications of dot-product functions: Downsampling

- Each pixel of the low-res image corresponds to a little grid of pixels of the high-res image.
- The intensity value of a low-res pixel is the average of the intensity values of the corresponding high-res pixels.
- Averaging can be expressed as dot-product.
- We want to compute a dot-product for each low-res pixel.

- To blur a face, replace each pixel in face with average of pixel intensities in its neighborhood.
- Average can be expressed as dot-product.
- Gaussian blur: a kind of weighted average

Applications of linear combinations

Resource consumption profile
For making one gnome:
$\mathbf{v}_{1}=\{$ metal:0, concrete:1.3, plastic:0.2, water:0.8, electricity:0.4\}
For making one hula hoop:
$\mathbf{v}_{2}=\{$ metal: 0 , concrete: 0 , plastic:1.5, water: 0.4 , electricity:0.3\}
For making one slinky:
$\mathbf{v}_{3}=\{$ metal: 0.25 , concrete:0, plastic:0, water:0.2, electricity:0.7\}
For making one silly putty:
$\mathbf{v}_{4}=\{$ metal: 0 , concrete: 0, plastic:0.3, water:0.7, electricity:0.5\}
For making one salad shooter:
$\mathbf{v}_{5}=\{$ metal:1.5, concrete:0, plastic:0.5, water:0.4, electricity:0.8\} input [number α_{1} of gnomes, number α_{2} of hula hoops, ..., number α_{5} of salad shooters] function $f\left(\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right]=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}+\alpha_{5} \mathbf{v}_{5}\right.$ outputs the total resource consumption profile.

Applications of linear combinations

Lights Out (over GF(2)
vectors $\mathbf{v}_{1}, \ldots, v_{n}$ are button vectors, e.g. $\begin{array}{lll}\bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet \\ \bullet\end{array}$
$\mathbf{x}=\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ specifies whether a button is pressed or not
$f\left(\left[\alpha_{1}, \ldots, \alpha_{n}\right]\right)=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$ specifies what initial state this solves

