Number of solutions to a linear system

We just proved:

If uy is a solution to a linear system then
{solutions to linear system} = {u; +v:v e V}

where V = {solutions to corresponding homogeneous linear system}

Implications:
Previously we asked: How can we tell if a linear system has only one solution?

Now we know: If a linear system has a solution u; then that solution is unique if the only
solution to the corresponding homogeneous linear system is 0.

Previously we asked: How can we find the number of solutions to a linear system over GF(2)?

Now we know: Number of solutions either is zero or is equal to the number of solutions to the
corresponding homogeneous linear system.

Number of solutions: checksum function

MD5 checksums and sizes of the released files:

3c63a6d97333f4da35976b6a0755eb67 12732276 Python-3.2.2.tgz
9d763097a13a59££53428c9e4d098a05 10743647 Python-3.2.2.tar.bz2
3720ce9460597e49264bbb63b48b946d 8923224 Python-3.2.2.tar.xz
£6001a9b2be57ecfbefa865e50698cdf 19519332 python-3.2.2-macosx10.3.dmg
8fe82dl4dbb2e96a84fd6fal985b6£73 16226426 python-3.2.2-macosx10.6.dmg
cccb03e14146£7ef82907cf12bf5883¢c 18241506 python-3.2.2-pdb.zip
72d11475c986182bcbl0e5c9lacecd5bec 19940424 python-3.2.2.amd64-pdb.zip
ddeb3e3fb93ab5a900adb6f0dedab2le 18542592 python-3.2.2.amd64.msi
8afblb0le8fab738e7b234ebdfe3955c 18034688 python-3.2.2.msi

A checksum function maps long files to short sequences.
Idea:
» Web page shows the checksum of each file to be downloaded.
» Download the file and run the checksum function on it.
> If result does not match checksum on web page, you know the file has been corrupted.
» If random corruption occurs, how likely are you to detect it?
Impractical but instructive checksum function:
» input: an n-vector x over GF(2)
> output: [@1-X,a2-X, ..., ap4 - X]

Number of solutions: checksum function
Our checksum function:

> input: an n-vector x over GF(2)

» output: [@1 - X,a2 X, ..., A - X|
where a;, @, ..., ags are sixty-four n-vectors.

Suppose p is the original file, and it is randomly corrupted during download.
What is the probability that the corruption is undetected?

The checksum of the original file is [51,...,06a] = [a1-P,--.,a64 - P].
Suppose corrupted version is p + €.

Then checksum of corrupted file matches checksum of original if and only if

ai-(pte) = K ai-p-—ar-(pte) = 0 a-e
iff _ iff

as-(Pt+e) = [Bes as-p—ass-(pte) = 0 apy - €

iff e is a solution to the homogeneous linear system a; - x =0, ... @gs-x = 0.

Number of solutions: checksum function

Suppose corrupted version is p + €. Then checksum of corrupted file matches checksum of
original if and only if e is a solution to homogeneous linear system

a;-x =0

dgg - X = 0

If e is chosen according to the uniform distribution,

Probability (p + e has same checksum as p)

= Probability (e is a solution to homogeneous linear system)
number of solutions to homogeneous linear system

number of n-vectors
number of solutions to homogeneous linear system

2!1

Question: How to find out number of solutions to a homogeneous linear system over GF(2)? ‘

Geometry of sets of vectors: convex hull
Earlier, we saw: The u-to-v line segment is

{faou+pv : aeR,BeR,a>0,>0,a+3=1}

Definition: For vectors vyi,...,v, over R, a linear combination

2-Dimensional Convex Hull of 3-Vectors over R

a1V + -+ apV,

is a convex combination if the coefficients are all nonnegative and they
sum to 1.

» Convex hull of a single vector is a point.

» Convex hull of two vectors is a line segment.

» Convex hull of three vectors is a triangle

Convex hull of more vectors? Could be higher-dimensional...
but not necessarily.

For example, a convex polygon is the convex hull of its vertices

Activity: Vec

You wrote the procedures in vec.py:
add(u,v), scalar mul(alpha, v), neg(v), dot(u,v)
Try writing these

» without using setitem or v[k] = ...
» without doing any mutation

» without assigning more than once to any variable (aside from comprehensions)

Two kinds of functions

Focus on two kinds of functions:
» dot-product functions
» linear-combination functions

Dot-product function:

» A function is specified by some C-vectors aq, ...

> Input is a C-vector X
» Output is [a1 - X,...,am - X]

Linear-combination function:

» A function is specified by some R-vectors v, ...

> Input is a list of n scalars [, ..., an)

» Output is a1Vvy + - - - + a,V,

Example applications of dot-product function

» Cost/benefit
» C = {malt, hops, yeast, water}
cost vector
a; = {hops : $2.50/ounce, malt : $1.50/pound, water : $0.06/gallon, yeast : $.45/g}
calorie vector az = {hops : 0, malt : 960, water : 0, yeast : 3.25}
input X specifies quantity of each ingredient for some recipe, e.g.
x ={hops:6 oz, malt:14 pounds, water:7 gallons, yeast:11 grams}
» Consumption of resources C = {radio, sensor, memory, CPU}
a1 is a vector specifying how long each hardware component is working during test period 1

A, is a vector specifying how long each hardware component is working during test period
m

x specifies how much energy each component consumes per second, e.g.

x = {memory : 0.06W, radio : 0.06W, sensor : 0.004W, CPU : 0.0025W}

function f(x) = [a1 - X,...,am - X] maps energy consumption per component to total
energy consumption per test period.

More example applications of dot-product functions

» match filter (image or audio search)
C is set of audio sample times or pixel locations
For each possible location of match, have a vector a;
X is an digital audio recording or a digital image.
f(x) = [a1,...,am| maps X to measurements of closeness of match
> Authentication
C={0,...,n—1}
Each a; is a challenge observed by Eve
X is password
f(x) =[a1-X,...,am - X] maps X to the list of responses Eve observed.

Applications of dot-product definition: Downsampling

» Each pixel of the low-res image
corresponds to a little grid of pixels of
the high-res image.

» The intensity value of a low-res pixel is
the average of the intensity values of the
corresponding high-res pixels.

Applications of dot-product functions: Downsampling

» Each pixel of the low-res image
corresponds to a little grid of pixels of
the high-res image.

» The intensity value of a low-res pixel is
the average of the intensity values of the
corresponding high-res pixels.

> Averaging can be expressed as dot-product.

» We want to compute a dot-product for each low-res pixel.

Applications of dot-product functions: blurring

» To blur a face, replace each pixel in face with
average of pixel intensities in its neighborhood.

» Average can be expressed as dot-product.

» Gaussian blur: a kind of weighted average

Applications of linear combinations

Resource consumption profile

For making one gnome:

Vi :{metal:O, concrete:1.3, plastic:0.2, water:0.8, electricity:0.4}

For making one hula hoop:

vy ={metal:0, concrete:0, plastic:1.5, water:0.4, electricity:0.3}

For making one slinky:

V3 :{meta1:0.25, concrete:0, plastic:0, water:0.2, electricity:O.?}

For making one silly putty:

Vg :{metalzo, concrete:0, plastic:0.3, water:0.7, electricity:O.S}

For making one salad shooter:

Vs :{meta1:1.5, concrete:0, plastic:0.5, water:0.4, electricity:O.S}
input [number ay of gnomes, number «ay of hula hoops, ..., number as of salad shooters]
function f([aa, ag, a3, aa, as] = a1vi + aaVa + a3V3 + asVs + asVs outputs the total resource
consumption profile.

Applications of linear combinations

Lights Out (over GF(2)

[] [] [} [)
vectors V1, ..., v, are button vectors, e.g.

[] [) [] [] [}
X = [aq, ..., ap] specifies whether a button is pressed or not

f([aa,...,an]) = a1vy + - - - + apV, specifies what initial state this solves

