
Number of solutions to a linear system

We just proved:

If u1 is a solution to a linear system then

{solutions to linear system} = {u1 + v : v 2 V}

where V = {solutions to corresponding homogeneous linear system}

Implications:

Previously we asked: How can we tell if a linear system has only one solution?

Now we know: If a linear system has a solution u1 then that solution is unique if the only
solution to the corresponding homogeneous linear system is 0.

Previously we asked: How can we find the number of solutions to a linear system over GF (2)?

Now we know: Number of solutions either is zero or is equal to the number of solutions to the
corresponding homogeneous linear system.



Number of solutions: checksum function

A checksum function maps long files to short sequences.
Idea:

I Web page shows the checksum of each file to be downloaded.
I Download the file and run the checksum function on it.
I If result does not match checksum on web page, you know the file has been corrupted.
I If random corruption occurs, how likely are you to detect it?

Impractical but instructive checksum function:
I input: an n-vector x over GF (2)
I output: [a1 · x,a2 · x, . . . , a64 · x]

where a1,a2, . . . , a64 are sixty-four n-vectors.



Number of solutions: checksum function

Our checksum function:
I input: an n-vector x over GF (2)
I output: [a1 · x,a2 · x, . . . , a64 · x]

where a1,a2, . . . , a64 are sixty-four n-vectors.

Suppose p is the original file, and it is randomly corrupted during download.
What is the probability that the corruption is undetected?

The checksum of the original file is [�1, . . . ,�64] = [a1 · p, . . . ,a64 · p].
Suppose corrupted version is p+ e.

Then checksum of corrupted file matches checksum of original if and only if

a1 · (p+ e) = �1
...

a64 · (p+ e) = �64

i↵
a1 · p� a1 · (p+ e) = 0

...

a64 · p� a64 · (p+ e) = 0

i↵
a1 · e = 0

...

a64 · e = 0

i↵ e is a solution to the homogeneous linear system a1 · x = 0, . . . a64 · x = 0.



Number of solutions: checksum function

Suppose corrupted version is p+ e. Then checksum of corrupted file matches checksum of
original if and only if e is a solution to homogeneous linear system

a1 · x = 0
...

a64 · x = 0

If e is chosen according to the uniform distribution,

Probability (p+ e has same checksum as p)

= Probability (e is a solution to homogeneous linear system)

=
number of solutions to homogeneous linear system

number of n-vectors

=
number of solutions to homogeneous linear system

2n

Question: How to find out number of solutions to a homogeneous linear system over GF (2)?



Geometry of sets of vectors: convex hull

Earlier, we saw: The u-to-v line segment is

{↵u+ � v : ↵ 2 R,� 2 R,↵ � 0,� � 0,↵+ � = 1}

Definition: For vectors v1, . . . , vn over R, a linear combination

↵1 v1 + · · ·+ ↵n vn

is a convex combination if the coe�cients are all nonnegative and they
sum to 1.

I Convex hull of a single vector is a point.

I Convex hull of two vectors is a line segment.

I Convex hull of three vectors is a triangle

Convex hull of more vectors? Could be higher-dimensional...
but not necessarily.

For example, a convex polygon is the convex hull of its vertices



Activity: Vec

You wrote the procedures in vec.py:
add(u,v), scalar mul(alpha, v), neg(v), dot(u,v)

Try writing these

I without using setitem or v[k] = ...

I without doing any mutation

I without assigning more than once to any variable (aside from comprehensions)



Two kinds of functions

Focus on two kinds of functions:

I dot-product functions

I linear-combination functions

Dot-product function:

I A function is specified by some C -vectors a1, . . . ,am
I Input is a C -vector x

I Output is [a1 · x, . . . ,am · x]
Linear-combination function:

I A function is specified by some R-vectors v1, . . . , vn
I Input is a list of n scalars [↵1, . . . ,↵n]

I Output is ↵1v1 + · · ·+ ↵nvn



Example applications of dot-product function

I Cost/benefit
I

C = {malt, hops, yeast,water}
cost vector
a1 = {hops : $2.50/ounce,malt : $1.50/pound ,water : $0.06/gallon, yeast : $.45/g}
calorie vector a2 = {hops : 0,malt : 960,water : 0, yeast : 3.25}
input x specifies quantity of each ingredient for some recipe, e.g.

x ={hops:6 oz, malt:14 pounds, water:7 gallons, yeast:11 grams}
I Consumption of resources C = {radio, sensor,memory,CPU}
a1 is a vector specifying how long each hardware component is working during test period 1

...
am is a vector specifying how long each hardware component is working during test period
m

x specifies how much energy each component consumes per second, e.g.
x = {memory : 0.06W, radio : 0.06W, sensor : 0.004W,CPU : 0.0025W}
function f (x) = [a1 · x, . . . ,am · x] maps energy consumption per component to total
energy consumption per test period.



More example applications of dot-product functions

I match filter (image or audio search)
C is set of audio sample times or pixel locations
For each possible location of match, have a vector ai
x is an digital audio recording or a digital image.
f (x) = [a1, . . . ,am] maps x to measurements of closeness of match

I Authentication
C = {0, . . . , n � 1}
Each ai is a challenge observed by Eve
x is password
f (x) = [a1 · x, . . . ,am · x] maps x to the list of responses Eve observed.



Applications of dot-product definition: Downsampling

I Each pixel of the low-res image
corresponds to a little grid of pixels of
the high-res image.

I The intensity value of a low-res pixel is
the average of the intensity values of the
corresponding high-res pixels.



Applications of dot-product functions: Downsampling

I Each pixel of the low-res image
corresponds to a little grid of pixels of
the high-res image.

I The intensity value of a low-res pixel is
the average of the intensity values of the
corresponding high-res pixels.

I Averaging can be expressed as dot-product.

I We want to compute a dot-product for each low-res pixel.



Applications of dot-product functions: blurring

I To blur a face, replace each pixel in face with
average of pixel intensities in its neighborhood.

I Average can be expressed as dot-product.

I Gaussian blur: a kind of weighted average



Applications of linear combinations

Resource consumption profile
For making one gnome:
v1 ={metal:0, concrete:1.3, plastic:0.2, water:0.8, electricity:0.4}
For making one hula hoop:
v2 ={metal:0, concrete:0, plastic:1.5, water:0.4, electricity:0.3}
For making one slinky:
v3 ={metal:0.25, concrete:0, plastic:0, water:0.2, electricity:0.7}
For making one silly putty:
v4 ={metal:0, concrete:0, plastic:0.3, water:0.7, electricity:0.5}
For making one salad shooter:
v5 ={metal:1.5, concrete:0, plastic:0.5, water:0.4, electricity:0.8}
input [number ↵1 of gnomes, number ↵2 of hula hoops, ..., number ↵5 of salad shooters]
function f ([↵1,↵2,↵3,↵4,↵5] = ↵1v1 + ↵2v2 + ↵3v3 + ↵4v4 + ↵5v5 outputs the total resource
consumption profile.



Applications of linear combinations

Lights Out (over GF (2)

vectors v1, . . . , vn are button vectors, e.g.
• •
•

• •
•

•
• •

•
• •

x = [↵1, . . . ,↵n] specifies whether a button is pressed or not
f ([↵1, . . . ,↵n]) = ↵1v1 + · · ·+ ↵nvn specifies what initial state this solves


