Do the following problems, then do Problem 3 in `hw10-18.pdf` provided earlier. The following problems use the stencil `exchange_lemma_practice.py`. The third problem uses the stencil `The_Basis_other_problems.py`

Exchange Lemma for vectors over \(\mathbb{R} \)

Problem 1: Let \(S = \{[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]\} \), and let \(A = \{[1, 0, 0, 0, 0], [0, 1, 0, 0, 0]\} \). For each of the following vectors \(z \), find a vector \(w \) in \(S - A \) such that \(\text{Span } S = \text{Span } (S \cup \{z\} - \{w\}) \).

(a) \(z = [1,1,1,1] \)
(b) \(z = [0,1,0,0] \)
(c) \(z = [1,0,1,0,1] \)

Exchange Lemma for vectors over \(GF(2) \)

Problem 2: We refer in this problem to the vectors over \(GF(2) \) specified in Problem 5.14.4.

Let \(S = \{v_1, v_2, v_3, v_4\} \). Each of the following parts specifies a subset \(A \) of \(S \) and a vector \(z \) such that \(A \cup \{z\} \) is linearly independent. For each part, specify a vector \(w \) in \(S - A \) such that \(\text{Span } S = \text{Span } (S \cup \{z\} - \{w\}) \). (Hint: Drawing subgraphs of the graph will help.)

(a) \(A = \{v_1, v_4\} \) and \(z \) is \[
\begin{array}{cccccccc}
 a & b & c & d & e & f & g & h \\
 1 & 1 & & & & & & \\
\end{array}
\]

(b) \(A = \{v_2, v_3\} \) and \(z \) is \[
\begin{array}{cccccccc}
 a & b & c & d & e & f & g & h \\
 1 & 1 & & & & & & \\
\end{array}
\]

(c) \(A = \{v_2, v_3\} \) and \(z \) is \[
\begin{array}{cccccccc}
 a & b & c & d & e & f & g & h \\
 1 & & & & & & & 1 \\
\end{array}
\]

Finally, remember to do Problem 3.