Lecture 7 Outline

- Chomsky Normal Form
- Pumping lemma for CFLs
- Closure under \cap, etc.

Def. Let G be a CFG. From last time, it's in Chomsky Normal Form if all rules have the form:

- I. $A \rightarrow BC$ \quad $A \notin V_f$, $B, C \in \{A, \ldots, F\}$
- II. $A \rightarrow \alpha$ \quad $A \notin V_f$, $\alpha \in \Sigma^*$
- III. $S \rightarrow \epsilon$ \quad S the start variable, ϵ the empty string

Thm. If L is context-free, then $\exists G$ in Chomsky normal form such that $L = L(G)$.

Pf. Given $G = (V, \Sigma, R, S, A)$

1. Add a new start variable S' (and rename the old one).

 $$G' = (V \cup \{S\}, \Sigma, R \cup \{S' \rightarrow A \ \text{for each occurrence of } A\}, S)$$

2. Remove rules of the form $A \rightarrow \epsilon$.

 For every rule $B \rightarrow uAv$
 add rule $B \rightarrow uv$ for every occurrence of A.

 e.g. $B \rightarrow uAvAw$, $A \rightarrow \epsilon$
 add rules $B \rightarrow uvAw$, $B \rightarrow uAv$, $B \rightarrow uvw$.

 If A occurs n times in a rule, we add $2^n - 1$ additional rules. So step 2 can blow up the size of the grammar quite a bit.
(Proof of Theorem Continued)

But there's a problem with step 2: we could keep going forever! e.g.

\[A \rightarrow B \quad A \rightarrow \epsilon \]
\[B \rightarrow A \quad B \rightarrow \epsilon \]

Removing \(A \rightarrow \epsilon \) or \(B \rightarrow \epsilon \), then removing the other puts \(A \rightarrow \epsilon \) or \(B \rightarrow \epsilon \) back again!

So...

1. **Fixed Step 2**
 - **If** \(B \rightarrow uA_v \), add the rule \(B \rightarrow uv \) unless this causes you to add a rule which has previously been removed.

2. **Remove "unit rules"** — rules of the form \(A \rightarrow B \) where \(A, B \) are variables.
 - To remove \(A \rightarrow B \), for every rule that has \(B \rightarrow u \) (\(u \) a string of variables and terminals), add the rule \(A \rightarrow u \).
 - (Only add rule \(A \rightarrow u \) if you haven't previously removed it.)

3. **Make sure terminals appear on RHS alone.**
 - For every terminal \(a \in \Sigma \), add a variable \(V_a \) and a rule \(V_a \rightarrow a \). Then replace \(a \) with \(V_a \) whenever \(a \) is not alone on the RHS.

4. **Make it so that only 2 variables appear on the RHS of a rule.**
 - If \(A \rightarrow uvw \), add a variable \(A_1 \) and make rules
 \[A \rightarrow A_1 uA_1 \quad A_1 \rightarrow vw \]. Repeat this until every string of variables is only of length 2.
Example of a conversion to Chomsky Normal Form.

The language \(\{0^n1^n \mid n \geq 0\} \) is recognized by the following CFG:

\[
S \rightarrow 0S1 \mid \varepsilon
\]

After rule 1:

\[
S \rightarrow A \\
A \rightarrow 0A1 \mid \varepsilon
\]

After rule 2:

\[
S \rightarrow A \mid \varepsilon \\
A \rightarrow 0A1 \mid 01
\]

After rule 3:

\[
S \rightarrow 0A1 \mid 01 \mid \varepsilon \\
A \rightarrow 0A1 \mid 01
\]

After rule 4:

\[
S \rightarrow V_0AV_1 \mid V_0V_1 \mid \varepsilon \\
A \rightarrow V_0AV_1 \mid V_0V_1 \\
V_0 \rightarrow 0 \\
V_1 \rightarrow 1
\]

After rule 5:

\[
S \rightarrow V_0S_1 \mid V_0V_1 \mid \varepsilon \\
S_1 \rightarrow AV_1 \\
A \rightarrow V_0A \mid V_0V_1 \\
A_1 \rightarrow AV_1 \\
V_0 \rightarrow 0 \\
V_1 \rightarrow 1
\]

Chomsky Normal Form CFG recognizing \(\{0^n1^n \mid n \geq 0\} \).
FACT: If $s \in L(G)$ and G is in Chomsky Normal Form, and $|s| = n$, then every derivation of s has length $2n-1$. (Except if s is the empty string ($n=0$), in which case the derivation has length 1.)

We will come back to Chomsky Normal Form later, for now we do the Pumping Lemma for CFLs.

PUMPING LEMMA FOR CFLs.

If L is a CFL, then $\exists p$ such that $\forall s \in L$, $|s| \geq p$, we can write $s = uvxyz$ such that

(i) $|vy| \geq 1$

(ii) $|vxy| \leq p$

(iii) $\forall i \geq 0$, $uv^ixy^iz \in L$.

PICTURE:

```
  S -> A
    |    |    |    |    |
  u  v  x  y  z
  |    |    |    |
  v  x  y
  |    |
  v  y

\[ s = uvxyz \in L \]

\[ uv^2xy^2z \in L. \]
```
Proof of Pumping Lemma for CFLs

Let b be the max # of symbols on the RHS of a rule.

A parse tree of height h has at most b^h leaves.

So a string s of length b^h+1 must have a position such that the length of the path to the root is $\geq h+1$.

Let s be any string in L of length $\geq b^{|s|+1}$.
If no such s exists, the pumping lemma is vacuously true for $p = b^{|s|+1}$, so we're done.

Otherwise, let T be the smallest parse tree for s or the smallest if there is more than one.
Let j be the position in s such that its path in the parse tree T is of length $\geq |s|+1$. So there is a repeat variable A on the way to position j. Pick A such that it occurs twice within the bottom-most $|s|+1$ steps of the path to position j.

Let x be the string derived from the lower A, and let $vyxy$ be the string derived from the upper A.
Let $uvxyz$ be the entire string s.

(i) $|vy| \neq 0$ because if $vy = \varepsilon$ then "replacing" upper A with lower A results in a smaller parse tree, contradicting our choice of T. So $|vy| \geq 1.$
(ii) $|vxy| \leq p$ because upper A is in the bottom $|V|+1$ levels of the tree, so the length of the string generated by upper A is of length at most $b^{|V|+1}$.

(iii) uv^ixy^iz is in L for all $i \geq 0$ by "re-hanging" the tree, with i copies of A replacing the lower A.

Application of Pumping Lemma for CFLs:
The language

$$L = \{a^n b^n c^n : n \geq 0\}$$

is not a Context-free language.

Proof: Let p be a pumping length and consider $a^pb^pc = uvxyz$.

Case 1. v is a string of 0 or more a's, y is a string of 0 or more b's, $|vy| > 1$, then

$$uvvxyyzz = a^{p+k}b^{p+m}c^p \in L.$$
Case 2: \(v = a^p, y = a^m \)
\[uvuvyyz = p^{p+q+m} b^p c^p \in L \]
Similarly if \(v = b^p, y = b^m \) or \(v = c^p, y = c^m \).

Case 3: \(v = a^p b^m, \quad p \geq 1, m \geq 1. \)
This doesn't work.

etc.

Are context-free languages closed under \(\cap, U, \cup, \ast, \circ \)?

\[\checkmark \text{Closed Under Union.} \]
\[\text{Make start state } S \rightarrow S_1, S \rightarrow S_2 \]
where \(S_1 \) and \(S_2 \) are start states of two
CFGs for two languages.

\[\checkmark \text{Closed Under Kleene *} \]
\[\checkmark \text{Closed Under Concatenation} \]

But \(L_1 \cap L_2 \) is not context-free.

Both context-free

X NOT closed under complement.

EeXerise.