1 PSPACE-completeness

Definition. A language \(L \) is \textbf{PSPACE-hard} if for all \(L' \in \text{PSPACE} \), \(L' \leq_p L \). That is, \(L' \) can be reduced to \(L \) in polynomial time.

Why polynomial-time reduction, rather than considering a new kind of reduction, polynomial-space reductions? Suppose \(A \in \text{PSPACE} \). With polynomial space (no bound on time), we can already decide \(A \). Then we may as well do that instead of reducing to some other language \(B \). In fact, any language \(A \) in PSPACE can be reduced in polynomial space to any other language \(B \), except for when \(B = \emptyset \) or \(\Sigma^* \). The reduction from \(A \) to \(B \) is just: on input \(w \), first run the polynomial-space decider to decide if \(w \in A \). If yes, output some fixed “yes” instance \(x_{\text{yes}} \in B \); if no, output some fixed “no” instance \(x_{\text{no}} \not\in B \). All we need for this reduction to work is that some \(x_{\text{yes}} \) and \(x_{\text{no}} \) exist, i.e. that \(B \) is not \(\emptyset \) or \(\Sigma^* \).

Definition. A language \(L \) is \textbf{PSPACE-complete} if:

1. \(L \in \text{PSPACE} \).
2. \(L \) is PSPACE-hard.

2 Quantified boolean formulas and TQBF

Recall the following about Boolean formulas. A \textbf{Boolean formula} is, for example,

\[
(x_1 \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})
\]

We can also have a \textbf{Boolean formula with constants}, which might look like

\[
(T \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})
\]

We could also have a Boolean formula with just constants, and no variables:

\[
(T \lor F \lor F) \land (\overline{F} \lor \overline{F})
\]

Definition. A \textbf{quantified boolean formula} is a string of the form

\[
\psi = Q_1x_1Q_2x_2\ldots Q_nx_n\phi(x_1, x_2, \ldots, x_n),
\]

where \(Q_i \) are each quantifiers (either \(\forall \) or \(\exists \)), and \(\phi \) is a (regular) boolean formula of the variables \(x_1, \ldots, x_n \). In other words, \(\phi \) is the kind of formula we have seen before, e.g. in the language 3SAT.
For example, one quantified boolean formula is
\[\exists x_1 \forall x_2 \exists x_3 (x_1 \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3}). \]

This definition also lets us redefine SAT and \textsc{Tautology}:
\[
\text{SAT} = \{ \langle \phi \rangle \mid \psi = \exists x_1 \exists x_2 \ldots \exists x_n \varphi(x_1, \ldots, x_n) \text{ is a true quantified boolean formula} \}.
\]
\[
= \{ \langle \phi \rangle \mid \psi = \forall x_1 \forall x_2 \ldots \forall x_n \varphi(x_1, \ldots, x_n) \text{ is a true quantified boolean formula} \}.
\]

A quantified boolean formula is defined to be true exactly when the quantified statement is true, where each \(x_i \) is taken to be \(T \) or \(F \). Consider the previous example,
\[
\exists x_1 \forall x_2 \exists x_3 (x_1 \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3}).
\]

Consider the case that \(x_1 = T \). Then the formula becomes
\[
\forall x_2 \exists x_3 (T \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3}).
\]

If \(x_2 = T \), then \(\exists x_3 (T \lor T \lor x_3) \land (\overline{T} \lor \overline{x_3}) \) is true, since we can take \(x_3 \) to be \(F \), and the formula becomes \((T \lor T \lor F) \land (\overline{T} \lor \overline{F}) = T \). On the other hand if \(x_2 = F \), then \(\exists x_3 (T \lor F \lor x_3) \land (\overline{F} \lor \overline{x_3}) \) is true, no matter whether we take \(x_3 \) to be \(T \) or \(F \). So regardless of \(x_2 \), \(\exists x_3 (T \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \) is true, which means \(\forall x_2 \exists x_3 (T \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \) is true. So we have shown that if \(x_1 = T \), the remaining formula turns out to be true. Therefore,
\[
\exists x_1 \forall x_2 \exists x_3 (x_1 \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3}).
\]
is true. In particular, there exists a choice of \(x_1 \) (namely \(T \)) such that for all choices of \(x_2 \) (either \(T \) or \(F \)), there is a choice of \(x_3 \) that makes the regular boolean formula true (namely, \(x_3 = F \) when \(x_2 = T \), and say \(x_3 = T \) (or \(x_3 = F \), either works) when \(x_2 = F \)). So this is an example of a \textbf{true quantified boolean formula}.

We define the language of all such true quantified boolean formulas,
\[
\text{TQBF} = \{ \langle \psi \rangle \mid \psi \text{ is quantified boolean formula that is true} \}.
\]

3 TQBF is PSPACE-complete

Theorem. TQBF is PSPACE-complete.

Proof. We need to show (1) that \(\text{TQBF} \in \text{PSPACE} \), and (2) that \(\text{TQBF} \) is PSPACE-hard.

1. Consider the following algorithm:
 \begin{itemize}
 \item **Alg:** On input \(\psi = Q_1 x_1 Q_2 x_2 \ldots Q_n x_n \phi(x_1, x_2, \ldots, x_n) \):
 \begin{itemize}
 \item If \(n = 0 \), evaluate the truth of \(\psi \), and accept if it is true, or reject if it is false.
 \item Otherwise, if \(Q_1 = \exists \), run:
 \begin{align*}
 \text{Alg}(Q_2 x_2 \ldots Q_n x_n \phi(T, x_2, \ldots, x_n)) \\
 \text{Alg}(Q_2 x_2 \ldots Q_n x_n \phi(F, x_2, \ldots, x_n)).
 \end{align*}
 \end{itemize}
 \item Else, i.e. \(Q_1 = \forall \), again run the same things:
 \begin{align*}
 \text{Alg}(Q_2 x_2 \ldots Q_n x_n \phi(T, x_2, \ldots, x_n)) \\
 \text{Alg}(Q_2 x_2 \ldots Q_n x_n \phi(F, x_2, \ldots, x_n)).
 \end{align*}
 \end{itemize}
 If either of the two accepts, accept; otherwise, reject.
 \begin{itemize}
 \end{itemize}

Accept only if \textit{both} accept, and otherwise reject.
We can see that this algorithm is correct recursively. If there are no quantifiers (the \(n = 0 \) case), then the formula \(\phi \) does not contain any variables, and the algorithm correctly accepts if and only if \(\phi \) evaluates to true. For \(\exists x_i \), the algorithm just checks whether there exists a value of \(x_i \) that makes the remaining formula true. For \(\forall x_i \), the algorithm checks whether the remaining formula is true for all possible \(x_i \).

How much space do we use? Let \(S(n, m) \) be the space Alg needs for inputs \(\psi \) with \(n \) variables, and with length \(|\phi|=m\). We have

\[
S(n, m) = \underbrace{n + m} + \underbrace{1} + S(n-1, m)
\]

Now, \(S(0, m) \) is polynomial space in \(m \); say it uses \(p(m) \) space for some polynomial \(p \). Then

\[
S(n, m) = \sum_{i=0}^{n} \left[(n+1)+m+1 \right] + \sum_{i=2}^{n} \left[(n+2)+m+1 \right] + \cdots + \left[(n+1)+m+1 \right] + S(0, m)
= O(n^2) + nm + p(m),
\]

which is polynomial in the size of the input \(m \) (since the number of variables \(n \) is bounded by \(m \)).

(2) Let \(L \in \text{PSPACE} \). Let \(M \) be a TM deciding \(L \) using polynomial space, \(p(n) \), such that \(M \) has a unique starting and accepting configuration. In the last lecture, we saw that \(M \) must halt within \(2^h \cdot p(n) \) steps, for some constant \(h \).

Similar to in the Cook-Levin theorem, we prove by reducing from

\[
x \in L \iff M \text{ accepts } x
\]

\[
\iff M \text{ goes from the unique starting configuration for } x
\]

\[
to the unique accepting configuration in } 2^h \cdot p(n) \text{ steps}
\]

\[
\iff \exists \text{ an intermediate configuration } c_m \text{ such that }
\]

\[
M \text{ goes from } c_0(x) \text{ to } c_m \text{ in } \frac{1}{2} 2^h \cdot p(n) \text{ steps, and }
\]

\[
M \text{ goes from } c_m \text{ to } c_{\text{accept}} \text{ in } \frac{1}{2} 2^h \cdot p(n) \text{ steps}
\]

\[
\iff \exists c_m \text{ such that } \forall (c_1, c_2) \in \{ (c_0(x), c_m), (c_m, c_{\text{accept}}) \},
\]

\[
M \text{ goes from } c_1 \text{ to } c_2 \text{ in } \frac{1}{2} 2^h \cdot p(n) \text{ steps}
\]

\[
\iff \exists c_m^1 \text{ such that } \forall (c_1^1, c_2^1) \in \{ (c_0(x), c_m^1), (c_m^1, c_{\text{accept}}) \},
\]

\[
\iff \exists c_m^2 \text{ such that } \forall (c_1^2, c_2^2) \in \{ (c_1^1, c_m^2), (c_m^2, c_{\text{accept}}) \},
\]

\[
M \text{ goes from } c_1^1 \text{ to } c_2^2 \text{ in } \frac{1}{2} 2^h \cdot p(n) \text{ steps}
\]

\[
\cdots
\]

\[
\iff \exists c_m^h\cdot p(n) \text{ such that } \forall (c_1^h, c_2^h) \in \{ (c_1^{h-1}, c_m^h), (c_m^h, c_{\text{accept}}) \},
\]

\[
M \text{ goes from } c_1^h \text{ to } c_2^h \text{ in } 1 \text{ step.}
\]

The total number of \(\iff \) s above is \(h \cdot p(n) \).

A configuration \(C \) looks like

\[
\# y_1 \ y_2 \ \cdots \ y_m \ q_i \ y_{m+1} \ \cdots \ \# \underbrace{\cdots \cdots \cdots \ #}_{p(n)+3 \text{ cells}}
\]
Let S be the set of states in M. To encode C as Boolean variables, as in the proof of Cook-levin, we need

$$(p(n) + 3)(|\Gamma| + |S|)$$

variables. For j a cell in C, and $\alpha \in \Gamma \cup S \cup \{\#\}$, we define the variables $x^C_{j,\alpha}$, which is true if α is found in position j in C, and false otherwise.

Define the function F, which takes as input an assignment $\{a_{j,\alpha} : 1 \leq j \leq p(n) + 3, \alpha \in \Gamma \cup S \cup \{\#\}\}$ that encodes configuration C_1, and an assignment $\{b_{j,\alpha} : 1 \leq j \leq p(n) + 3, \alpha \in \Gamma \cup S \cup \{\#\}\}$ that encodes a configuration c_2. OR, just a variable. So each $a_{j,\alpha}$ is either T, F, or a variable. On input (c_1, c_2, t):

- If $t = 1$, output $\phi_{\text{cell}} \land \phi_{\text{move}}$, for these, where $\phi_{\text{cell}} = \bigwedge_{j=1}^{p(n)+3}$ only one variable per cell is true both in c_1 and c_2. And,

$$\phi_{\text{move}} = \bigwedge_{j=1}^{p(n)+3} \bigvee \left[\begin{array}{cccc} c & d & e \\ f & g & h \end{array} \right] \in \text{valid windows} a_{j,c} \land a_{j+1,d} \land a_{j+2,e} \land b_{j,f} \land b_{j+1,g} \land b_{j+2,h}$$

- If $t > 1$, output

$$\exists \{x_{j,\alpha}\} \land \exists \{y_{j,\alpha}\} \land \exists \{z_{j,\alpha}\} \left[F\left(\{y_{j,\alpha}\}, \{z_{j,\alpha}\}, \frac{t}{2} \right) \right]$$

\begin{align*}
\exists \{x_{j,\alpha}\} & \land \{y_{j,\alpha}\} & \exists \{x_{j,\alpha}\} & \exists \{y_{j,\alpha}\} \\
\text{middle} & \text{new start, could} & \text{new end} & \text{be old start,}
\end{align*}

could be middle

\begin{align*}
\lor (\{y's\} = \{a's\}, \{z's\} = \{x's\}) \\
\lor (\{y's\} = \{x's\}, \{z's\} = \{b's\})
\end{align*}

We’re using shorthand: a logical $A \rightarrow B$ can be expressed as $\overline{A} \lor B$, and $A = B$ can be expressed as $(A \land B) \lor (\overline{A} \land \overline{B})$. So we can express the statement (e.g.) that all the x’s equal all the y’s.