Lecture 18

- More on P, NP, coNP
- Hamiltonian Path
- Decision vs Search

Review of time complexity classes:

\[\text{PATH} = \{ G, s, t \mid \text{Graph } G \text{ contains a path from } s \text{ to } t \} \]

we know the intersection of NP, co-NP that is not known to be NP is non-empty, so COMPOSITES WITH HINT (from HW 8) is in NP, coNP.

- zoom in
- green area: if non-empty, then P=NP
 - if empty, then P ≠ NP.

- grey area: if non-empty, then NP=coNP, because
 - suppose L in coNP is also NP-complete.
 - want to show that \(\forall A \in \text{NP}, A \in \text{coNP} \) and \(\forall B \in \text{NP}, B \in \text{coNP} \).
 - since \(A \in \text{NP}, A \notin L \), then \(A^c \notin L^c \). Since \(L \in \text{coNP} \), \(L^c \in \text{NP} \), so decide \(A^c \) in bounded poly-time, also:
 - on input \(\langle x \rangle \):
 - compute \(f(x) \), where \(f \) is the reduction from \(A \) to \(L \)
 - run \(N \), the NTM decoder (poly-time) for \(L^c \) on \(f(x) \)
 - agree with its decision.

you may refer to the solution of HW 8, LP3 for another description of this logic.

Hence \(A^c \in \text{NP} \Rightarrow A \in \text{coNP} \).
Given $B \in \text{CONP}$, $B^c \in \text{PL}$, so $B \in \text{PL}^c$. Hence B is polytime reducible to an NP language $\Rightarrow B \in \text{NP}$.

Hence if the green region is not empty, then $\text{NP} = \text{CONP}$.

We also have NP-hard languages that are not \in NP, one such language is known to be in MinColorability, which you will become more familiar with on the midterm! Yay!

Reminder; some NP-COMPLETE LANGUAGES are SAT, 3SAT, CLIQUE, 3-COLORABILITY, SUBSET-SUM, HAMILTONIAN PATH + friends.

Similarly to NP-COMPLETENESS, we have CONP-COMPLETE, and CONP-HARD languages. You will show that MIN-COLORABILITY is CONP-HARD.

It is conjectured that CONP \neq NP. It follows that NP \neq P. This belief is depicted in the graph:

- If $P \neq \text{NP}$, but $\text{NP} = \text{CONP}$.
- If $P = \text{NP}$.

Our favorite CONP-Complete Language is TAUTOLOGY.

* If you want to look at more complexity classes, there is a website called complexity.zoo.uwaterloo.ca!
Recall the language $\text{HAMILTONIAN PATH} = \{ G, s, t \mid G \text{ is a directed graph, and } \exists \text{ a path from } s \text{ to } t \text{ that with every vertex in } V(G) \text{ exactly once} \}$

It is easy to see that HAMILTONIAN PATH is in NP by using a verifier.

It is NP-hard by a reduction from 3SAT.

Student question: Why do we use 3SAT so much?

Usually because it gives the cleanest reduction. In "real life", it is often hard to see which language is nice to use. Languages like 3-SAT and 3-Colorability are the three that gives a nice structure to the problems.

Here is a tree to explain the flow of reductions:

- SAT
 - 3SAT
 - CLIQUE
 - Independent set
 - Vertex cover
 - 3-Colorability
 - SUBSET-SUM
 - Bin packing
 - "McCoy's Problem"
 - PARTITION

If you are locked for NP-complete problems, there is a book by Garey and Johnson titled "NP-Completeness" from the 70's. They have a great introduction!
Back to HAMPATH!

Input ϕ with n variables and m clauses.

Idea: construct a graph with a peculiar structure

Imagine one chamber for each variable, clearly, $\exists a HAMPATH$ through this graph. There are actually 2^n of them, two options for each variable.

Add in, for each chamber

Imagine clause $\phi_i = (x_i \lor \overline{x_i} \lor \overline{x_i} \lor x_i)$. Then we have

Let going left correspond to being true for the variable.

Add edge out of left middle vertex of x_i chamber if x_i appears in ϕ_i; and going back from node ϕ_i to the right middle ϕ_i'. If x_i appears as false, then have edge $(x_i \lor \text{right-middle}, \phi_i)$ and $(\phi_i, x_i \lor \text{left-middle})$.

Then, imagine ϕ_i as the only clause in ϕ.

Then, we only visit all the nodes if we take the path to ϕ_i at some point, which we can only do by picking the correct direction to go through the graph, corresponding to the truth assignment of variable x_i in clause ϕ_i.

In general, we have more clauses:

- V_i, top
- V_i, middle
- V_i, bottom

If x_i appears in clause ϕ_j, add edges

- $(V_{ij}, V_{k,l})$, (V_{kl}, V_{ij})
- $(V_{ij}, \overline{x}_i \lor \overline{x}_j)$, (V_{kl}, V_{ij})
Reduction:

"On input a 3CNF \(\phi = \phi_1 \land \phi_2 \land \ldots \land \phi_m \) on \(n \)-variables \(x_1, \ldots, x_n \)

Compute directed graph \(G \),

\[
V(G) = \left\{ \begin{array}{l}
V_1, \topo, V_2, \topo, \ldots, V_n, \topo, V_{n+1}, \topo = t, \\
V_{ij} : 1 \leq i \leq n, 0 \leq j \leq m \}
\end{array} \right.
\]

\[
E(G) = \left\{ \begin{array}{l}
(V_{ij}, V_{i+1,j}) \text{ for } 0 \leq j \leq m-1, \\
(V_{ij}, V_{i,j+1}) \text{ for } 0 \leq j \leq m-1, \\
(V_{i,0}, V_{i+1,0}), \\
(V_{i,m}, V_{i+1,m}) \text{ for } 1 \leq i \leq n
\end{array} \right.
\]

Output \((G, s, t)\) .

Running time: \(O(nm) \) for vertices, \(O(n^2 m) \) edges \(\rightarrow \) polynomial

Corollary: Suppose \(\phi \in 3SAT \). Let us construct a path \(a_1, \ldots, a_n \) then \(a_1, \ldots, a_n \)
be the set assignment to \(\phi \) (which we have assumed exists). Path starts
at \(s = V_1, \topo \). For every \(i, \) go from \(V_i, \topo \) to \(V_{i,0} \) if \(a_i = T \),
and to \(V_{i,m} \) if \(a_i = F \).

If \(a_i = T \) and \(x_i \) is in clause \(\phi_j \), and \(V_{i,j} \) has not yet been
visited, go from \(V_{i,j-1} \) to \(V_{i,j} \). And \(V_{i,j} \) is \(V_{i,j} \). Else, go from \(V_{i,j-1} \) to \(V_{i,j} \).

Hence we can construct a path from \(s \) to \(t \). From the true assignment.
Suppose G has a Hamilton path from s to t. Then, by similar logic, it
has a Hamilton assignment. (Exercise for the reader!!)