Lecture 17

Outline:
- 3-colorability & Friends
- Subset Sum & Friends
- Hamiltonian Path & Friends

Def
A k-coloring of a graph G is a partition of $V(G)$ into $\leq k$ disjoint sets s.t. $\forall (u,v) \in E(G)$, u and v belong to different sets.

k-Colorability = $\{G \mid G$ has a k-coloring$\}$

Thm 3-colorability is NP-complete.

Proof:
1. 3-colorability is in NP (exercise)
2. 3-colorability is NP-Hard

Roadmap:
- Reduction from 3-SAT
- Runtime Analysis
- Correctness analysis

- Idea: make a graph that can be 3-colored if Φ is satisfiable.
 - 2 gadgets correspond to truth values
 - 3 colors correspond to T (true), F (false), N (neither)
how do you make sure no literal ever gets assigned to N?

have a special triangle (palette)

here is a gadget for the truth table of Or.

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>$X_1 \lor X_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

This can be colored T iff (at least one variable is colored T)

e.g.
You can represent each clause by combining 2 or-gadgets. e.g.

\((X_1 \lor \overline{X}_2 \lor X_3)\) corresponds to:

![Diagram](image)

As you can see, this means 5 vertices and 10 edges get added per clause. I've labelled the vertices \(V_1 \ldots V_5\)

So, in the end, the graph looks something like this:

For \(\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_m\) (setting \(\varphi_1 = (X_1 \lor \overline{X}_2 \lor X_3)\))

![Diagram](image)

Gadgets for \(\varphi_1\)

Gadgets (and edges) for \(\varphi_2 \ldots \varphi_m\)
Formal Reduction:

On input a 3-CNF $\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_m$
over variables x_1, \ldots, x_n

Construct $G = (V, E)$ as follows:

$$V = \{T, F, N^3\} \cup \bigcup_{i=1}^{n} \{x_i\} \cup \{\overline{x}_i\} \cup \bigcup_{j=1}^{m} \{V_{ij}, V_{2j}, V_{3j}, V_{4j}, V_{5j}\}$$

- 5 gadget vertices for each clause
- 2 new vertices for each literal
- the palette

$$E = \{(T,F),(T,N),(N,F)\} \leftarrow \text{palette edges}$$
$$\cup \bigcup_{i=1}^{n} \{(x_i, \overline{x}_i), (x_i, N), (\overline{x}_i, N)\} \leftarrow \text{forces one of } \{x_i, \overline{x}_i\} \text{ to be } T, \text{ one other one false}$$
$$\cup \bigcup_{j=1}^{m} \{(y_{ij}, V_{ij}), (y_{2j}, V_{2j}), (V_{ij}, V_{2j}), (V_{ij}, V_{3j}), (V_{2j}, V_{3j}), (V_{3j}, V_{4j}), (V_{4j}, V_{5j}), (V_{4j}, T), (V_{5j}, T)\}$$

(where $\varphi_j = y_{ij} \lor y_{2j} \lor y_{3j}$)

the 5 gadget edges for each clause

Run-time: $|V| = 3 + 2n + 5m$ (n = # literals, m = # clauses)

= linear in input size, and can be built
in $O(|\varphi|)$ time.

$|E| = 3 + 3n + 10m$

can also be built in time $O(|\varphi|)$ time.
Correctness:

\[\phi \text{ is satisfiable } \Rightarrow G \text{ can be 3-colored} \]

We've already argued this...

Name your 3 colors \(t, f, \bar{0} \)

for a satisfying assignment of \(x_1, \ldots, x_n \) to \(T/F \)

- if \(x_i \) is true color \(x_i \) \(t \)
- color \(\bar{x}_i \) \(f \)

- if \(x_i \) is false color \(x_i \) \(f \)

The gadgets allow you to color everything else.

\[\phi \text{ is not satisfiable } \Rightarrow G \text{ cannot be 3-colored} \]

Let \(a, \ldots, a_n \) be an assignment of truth values to the literals \(x_1, \ldots, x_n \)

Since \(\phi \) cannot be satisfied, there must be some clause \(\phi_j \) that is not satisfied with \(a_1, \ldots, a_n \)

\[\phi_j = (y_{ij} \lor y_{2j} \lor y_{3j}) \]

Since \(\phi_j \) is not satisfied, they must all be colored \(f \).

But then there is no way to color \(v_{ij}, \ldots, v_{3j} \)
friends of 3-colorability:

for \(k \geq 3 \) it is fairly straightforward to show that K-colorability is NP complete (via reduction from 3-colorability).

HINT: Do this on your HW.
also, scheduling (from 1st class)

Note: why do we sometimes talk about languages, and sometimes talk about problems?
Given a language \(L \), the corresponding decision problem is to decide if an instance is a yes instance or no instance.

ex. Language: 3SAT

Decision Problem: given \(\Phi \) accept if \(\Phi \in 3SAT \)
reject otherwise

Instance: any string

Yes-instance: \(\Phi \) s.t. \(\Phi \in 3SAT \)
No-instance: \(\Phi \) s.t. \(\Phi \notin 3SAT \)

thinking about things in terms of instances can help:
e.g. to reduce from 3SAT to 3-colorability

show yes instances map to yes instances
no instances map to no instances
\[\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S \text{ is a set of integers, written in decimal}, \]
\[t \text{ is an integer, written in decimal}, \]
\[\exists s' \subseteq S \quad \text{s.t.} \quad \sum_{x \in s'} x = t \} \]

\textbf{Thm.} \quad \text{SUBSET-SUM is NP-complete}

1. \quad \text{SUBSET-SUM} \in \text{NP} \quad \text{(exercise)}
2. \quad \text{NP-hardness}

We will reduce from 3SAT.

Given \(\varphi \): 3CNF with \(n \) vars, \(m \) clauses.

Make a table: each row will correspond to a \(\# \) in your set. You will be forced to select rows to reach your target.

<table>
<thead>
<tr>
<th>Variables (x_1, x_2, \ldots, x_n)</th>
<th>Clauses (\varphi_1, \varphi_2, \varphi_3, \ldots, \varphi_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1) 1 0 0 0 (\bar{1})</td>
<td>(\varphi_1) (0) (0) (0)</td>
</tr>
<tr>
<td>(f_1) 1 0 0 0 (0)</td>
<td>(\varphi_2) (0) (0) (1)</td>
</tr>
<tr>
<td>(t_2) 0 1 0 0 (0)</td>
<td>(\varphi_3) (0) (1) (0)</td>
</tr>
<tr>
<td>(f_2) 0 1 0 0 (1)</td>
<td>(\varphi_{\frac{m}{2}}) (0) (1) (0)</td>
</tr>
<tr>
<td>(t_n) 0 0 0 0 (0)</td>
<td>(\varphi_m) (0) (0) (1)</td>
</tr>
<tr>
<td>(f_n) 0 0 0 0 (1)</td>
<td>(\varphi_{n+1}) (0) (0) (1)</td>
</tr>
</tbody>
</table>

Suppose \(\varphi_1 = \)
\[x_1 \lor \overline{x_2} \lor x_3 \]

Select \(t_i \) if we set \(x_i \) to be \(T \).
Select \(f_i \) if we set \(x_i \) to be \(F \).

Exactly 1 of \(t_i \) or \(f_i \) must be selected.

A 1 for \(t_i \) in position \(j \) means \(x_i \) appears in \(\varphi_j \).
A 1 for \(f_i \) in position \(j \) means \(\overline{x_i} \) appears in \(\varphi_j \).
but now, what do we set our target to in the \(\phi_j \) col's? Could be 1, 2, or 3! Solution add slack variable rows.

\[
\begin{array}{cccccccc}
X_1 & X_2 & X_3 & \ldots & X_i & \ldots & X_n & \phi_1 & \phi_2 & \ldots & \phi_j & \ldots & \phi_m \\
+1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
f_1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
f_2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
f_3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
f_i & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
f_m & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{\psi_1}{\psi_i} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{\psi_2}{\psi_i} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{\psi_3}{\psi_i} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{\psi_m}{\psi_i} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{target} & 1 & 1 & 1 & \ldots & 1 & 3 & 3 & \ldots & 3 & \frac{\phi_1}{\phi_i} & = x_1 \lor \overline{x_2} \lor x_3
\end{array}
\]

more formally: construct \(S \) as follows:

- Each integer in \(S \) has \(n + m \) decimal digits.
- \(S = \{ t_i \}_{i=1}^{\infty} \cup \{ f_i \}_{i=1}^{\infty} \cup \{ \phi_j \}_{j=1}^{\infty} \cup \{ \psi_j \}_{j=1}^{\infty} \)

where \(t_i \) has 1 in position \(x_i \) and in each col \(\phi_j \) that contains \(x_i \);
- \(f_i \) has 1 in position \(x_i \) and in each col \(\phi_j \) that contains \(x_i \);
- \(\psi_j = \phi_i \) has 1 in position \(\phi_i \); 0's everywhere else

\[
\frac{t}{t} = \frac{1}{1} \frac{3}{3} \ldots \frac{3}{3}
\]