Lecture 14

- More on the class NP
- The class CoNP and NP vs CoNP
- Poly-time reducibility
- NP-complete and NP-complete languages

Important languages:

- $\text{HAMPATH} = \{< G, s, t > | G \text{ has a Hamiltonian path from } s \text{ to } t \}$
- $\text{HAMCYCLE} = \{< G > | G \text{ has a cycle that visits every vertex exactly once} \}$
- $\text{COMPOSITE} = \{< x > | x \text{ is a composite integer} \}$
- $\text{SAT} = \{< \phi > | \phi \text{ is a satisfiable Boolean formula} \}$
- $\text{3SAT} = \{< \phi > | \phi \text{ is a satisfiable Boolean formula in 3CNF} \}$
- $\text{TAUTOLOGY} = \{< \phi > | \phi \text{ is a Boolean formula if every assignment} \}$
- $\text{CLIQUE} = \{< G, k > | G \text{ has a clique of size } k \text{ (fully connected subgraph)} \}$
- $\text{Independent Set} = \{< G, k > | G \text{ has a subgraph of size } k \text{ such that no two vertices in the subgraph are connected} \}$
- $\text{Vertex Cover} = \{< G, k > | G \text{ has a subgraph of size } k \text{ such that all edges in } E(G) \text{ are either adjacent to at least one vertex in the subgraph} \}$
A alternative definition of NP relies on a polynomial-time verifier:

Definition: [poly-time verifier] A poly-time verifier for a language \(L \) is a TM \(V \) s.t. \(L = \{ w \mid \exists x \in \mathbb{F} \text{ witness } w \text{ s.t. } V(x, w) \text{ accepts} \} \) and \(V \)'s runtime is \(O(|x|) \) on input \(x \).

Definition: [all NP] \(L \in \text{NP} \) if \(L \) has a poly-time verifier.

Let's construct a poly-time verifier for \(\text{EUHAMPATH} \):

"On input \((G, s, t, w) \):

1. If \(w = (v_1, \ldots, v_n) \) that are a Hamiltonian path s.t. \(v_1 = s \) and \(v_n = t \), accept
2. Else reject."

Analysis: Correctness.

Suppose that \((G, s, t) \in \text{EUHAMPATH} \). Then \(u \), the Hamiltonian path, \(\exists v \in V \) s.t. \(V(x, u) \) accepts.

Suppose that \((G, s, t) \notin \text{EUHAMPATH} \). Then no such \(w \) exists, so \(\forall w \), \(V(x, w) \) rejects.

Runtime: For each \(v_i, v_{i+1} \), check if \((v_i, v_{i+1}) \in E(G) \). \(\forall \)

Poly-time verifier for COMPOSITES

"On input \((x, w) \):

1. If \(w: \{ w \cup x \text{ and } w \setminus x \text{, then accept} \}
2. Else reject."

Analysis: Correctness.

\(x \in \text{COMPOSITES} \) iff \(\exists \text{ witness } w \in \mathbb{F} \text{ s.t. } V(x, w) \text{ accepts} \).

Polytime: all basic arithmetic operations are polytime (proof is left to the reader).

Note: that the verifier rejecting \((x, w) \) for some \(w \) does NOT mean \(\langle x \rangle \) is not a composite. All choices of \(w \) must lead to \(V \) rejecting \((x, w) \).
Theorem: $NP = AHt NP$ (two-directional proof)

Proof: (i) $L \in NP \implies L \in AHt NP$

Suppose $L \in NP$. Then \exists a NTHN N that decides L in polynomial time. Let V be as follows:

"On input (x, w)

Simulate N on x by using w to choose between branches of N's computation.

If N accepts, accept

else reject"

Analysis: correctness.

Suppose $x \in L$. Then \exists a branch of computation in N such that N accepts

1) \exists a set of choices that N can non-deterministically make to accept x.

Let w be a string that encodes these choices. Then $V(x, w)$ accepts.

Suppose $x \not\in L$. Then N never accepts $\implies \exists$ a set of choices that leads N to accept x \iff no such w accepts.

polynomial time: same as N up to some polynomial factors \implies polynomial

(ii) $L \in AMTHNP \implies L \in NP$.

Suppose $L \in AMTHNP$. Then \exists a polynomial verifier V that decides L:

Consider N:

"On input x,

Non-deterministically choose w of length $p(|x|)$

Run $V(x, w)$, accept if it accepts

reject otherwise"

It is sufficient to choose w of length $p(|x|)$, as $V(x, w)$ does not have time to consider longer strings than $p(|x|)$ before the computation halts.

correctness

polynomial time
We introduce a new complexity class coNP:

$$\text{coNP} = \{ L \mid L^c \in \text{NP} \}$$

Note that $P \subseteq \text{NP}$ and $P \subseteq \text{coNP}$.

Another famous open problem is $\text{NP} = \text{coNP}$.

To see why this is not trivial, let's assume we have a language $L \subseteq \text{NP}$ with a polytime decider $\text{NTM } N$.

$$N \text{ on input } x$$

```
\text{accept?}
\text{if yes } x \in L
```

These branches do not know of each other.

N on input $x \notin L$ rejects if all branches reject. Could we just swap the final decision at each branch? No! because $\neg \phi$ for an $x \in L$, there may only be one accepting branch.

If we have a lot of rejecting branches and one accepting branch =) a rejecting branch at the decision gives a lot of accepting branches and one rejection => N accepts x although $x \notin L$.

Polytime reducibility

Define: $f : \Sigma^* \rightarrow \Sigma^*$ is polytime if f is computable by a polytime TM.

Define: Let A, B be languages. $A \leq_p B$ ("A is polytime reducible to B") if \exists a polytime computable f of $A \times x$, $x \in A$ iff $f(x) \in B$.

Example:

(Trivial) $3 \text{SAT} \leq_p \text{SAT}$

Let f be the identity function ($f(\phi) = \phi$). If ϕ is satisfiable and $\exists \chi \in f(\phi)$, then ϕ is satisfiable. Similarly for the other direction.
HAMPATH \cup HAMCYCLE

Want to do: take an instance of HAMPATH (G, s, t) and convert to a (G') with a cycle $(G', s, t) \in$ HAMPATH.

Idea: add a new vertex V_{new} with edges to s, t.

On input (G, s, t),
- Compute the graph G' such that:
 - $V(G') = V(G) \cup \{V_{new}\}$
 - $E(G') = E(G) \cup \{(s, V_{new}), (V_{new}, t)\}$

Output G'.

Analysis: Correctness.

Suppose $(G, s, t) \in$ HAMPATH. Then consider $V_{new}, V_1, V_2, \ldots, V_n, V_{new}$ such that $V_1 = s$, $V_n = t$. Then this is a cycle that visits every vertex in G' once.

Suppose $2(G') \in$ HAMCYCLE. Let $V_{new}, V_1, V_2, \ldots, V_n, V_{new}$ be a cycle Hamiltonian cycle in G'. Then let $s = V_1$, $t = V_n$, and we have a Hamiltonian cycle in G.

\square is showing that $(G, s, t) \in$ HAMPATH $\implies (G') \in$ HAMCYCLE

EQUIVALENT AND $(G') \in$ HAMCYCLE $\iff 2(G, s, t) \in$ HAMPATH equivalent to showing (G) and $(G', s, t) \not\in$ HAMPATH $\iff (G') \not\in$ HAMCYCLE?

A: Yes! In general, you need to show one of the following point carefully.

1. $x \in A \implies f(x) \in B$ or
2. $x \in A \implies f(x) \not\in B$

and $x \in B \iff x \in A$ and $f(x) \in B$. $f(x) \not\in B$.

\square is also called being NP-hard.

NP-COMPLETENESS

Definition: L is NP-COMPLETE if
1. $L \in$ NP
2. $A \in$ NP, $A \leq P L$ (this means every language in NP is in some sense easier than $A \leq L$)
Theorem: If \(A \approx P \) and \(B \approx P \), then \(A \approx P \).

Proof: If \(A \approx P \) and \(B \approx P \), and let \(f \) be the reduction to decide \(A \) in polynomial time, do:

1. On input \(x \):
 a. Compute \(f(x) \).
 b. Run \(M_B \) on \(y \) accept if it accepts, otherwise reject.

This is polynomial as \(f(x) \) is polynomial, \(M_B \) is polynomial, and \(|y| \) is polynomial in \(|x| \).

Definition 2: You are \(\text{NP-complete} \) if finding a polynomial algorithm for \(L \), i.e., showing that \(L \in \text{P} \), solves the problem \(\text{P=NP} \).

Now, how do we show that any language \(L \) is \(\text{NP-complete} \)?

Thm (Cook-Levin): \(\text{SAT} \) is \(\text{NP-complete} \) \(\iff \) proof next lecture!

Thm: If \(A \approx P \) and \(A \) is \(\text{NP-complete} \), and \(B \in \text{NP} \), then \(B \) is also \(\text{NP-complete} \).

Proof: Let \(L \) be a language \(\in \text{NP} \).
 - Let \(f_1 \) be the reduction \(L \leq A \) b/c \(A \) is \(\text{NP-complete} \).
 - Let \(f_2 \) be the reduction \(A \leq P \).
 - Consider \(f(x) = f_2(f_1(x)) \). \(f \) is polynomial from \(L \) to \(B \).
 - \(f(x) \in B \) \(\iff \) \(f_1(x) \in A \) \(\iff \) \(x \in L \).

On the next HW (5), \(\text{SAT} \leq \text{SAT} \), and we will show \(3\text{SAT} \in \text{NP} \). \(3\text{SAT} \) is \(\text{NP-complete} \).

In the book: \(3\text{SAT} \leq \text{CLIQUE} \).