L is Turing recognizable if \(\exists a \) a TM \(M \) such that \(L(M) = L \)

\[L(M) = \{ w \mid M \text{ accepts } w \} \]

A language \(L \) is recursively enumerable if there exists an enumerator \(E \) that prints it out, i.e., for all \(x \in L \), \(E \) will eventually print out \(x \) (repetitions allowed)

An enumerator is a TM that ignores its input and proceeds to write down strings separated by ";"

Theorem: \(L \) is Turing recognizable if and only if recursively enumerable

Proof: Let \(E \) be the enumerator. Consider \(M \):

On input \(w \)

1. Simulate \(E \)
2. If \(E \) prints \(w \), accept
3. If \(E \) halts (w/o printing \(w \)) reject
Then $L(M) = \emptyset$ because

we never print it out, eventually, then M accepts

we never print it out so M never accepts

\Rightarrow Suppose L is Turing recognizable

Let M_0 be the TM that recognizes it. Consider the following simulator

"On waking up,

time steps = 10

for every string w of length up to l

run M_0 on input w for t steps

If it accepts, print out w"
Analysis

Suppose \(w \in L \) then \(M \) accepts \(w \) at time \(t_w \).

Each iteration of the loop takes a finite amount of time, so after \(\log |w| \) iterations,
\[l \geq |w| \]

After \(\log |w| \) iterations, \(t \geq |w| \).

When \(E \) runs \(M \) on input \(w \) for \(t \) steps, \(M \) accepts, so \(E \) prints \(w \) at the output.

Suppose \(w \notin L \) Then \(M \) will never accept \(w \), so \(E \) will never print \(w \) at the output.

Lemma

If \(L \) and \(L^c \) are both T-rec, then \(L \) is decidable.

Corollary

If \(L \) is T-rec and undecidable, then \(L^c \) is not T-rec.

Recall

A function \(f \) is computable if \(\exists \) a TM \(M \) that \(M \) has an input \(x \), \(M \) halts and \(f(x) \) is written on its tape when it halts.
Definition: Let A, B be languages.

$A \leq_m B$ if there exists a computable function $f : \Sigma^* \to \Sigma^*$ such that $w \in A \iff f(w) \in B$.

Such a function is called a reduction from A to B.

Then let A, B be languages. If $A \leq_m B$ and B is decidable, then A is decidable.

If let f be the reduction from A to B.

Let M_B be the decider for B.

Then M_A is a decider for A:

$M_A = \text{"On input } x \text{, compute } y = f(x) \text{, Run } M_B \text{ on input } y \text{ Accept if it accepts, Reject otherwise.}"

Corollary: If A, B languages, s.t. $A \leq_m B$ and A is undecidable then B is undecidable.

Then let A, B be languages. If $A \leq_m B$ and B is T-en, then A is T-en.
Proof. Let f be the reduction from A to B

let M_B be a TM that recognizes B

then M_A (same as before) recognizes A

Analysis: Suppose we A, then by def of a

reduction $f(w) \in B$, then M_B accepts it

therefore M_A accepts w

Suppose $w \notin A$. Then $f(w) \notin B$ then M_B

does not accept $f(w)$, so M_A does not

accept either

Corollary: If A, B lang., s.t. $A \leq_M B$ and

A is not T-rec., then B is not T-rec

A, B languages, $A \leq_M B$ and A is decidable, then

we don't know anything about B

$E_{Tm} = \{ M \mid M$ is a TM and $L(M) = \emptyset \}$

Proof that E_{Tm} is undecidable

Suppose E_{Tm} decidable, then ATM decidable

as follows: let DE be the decider of E_{Tm}. Consider DA
$D_A := \text{"On input } \langle M, w \rangle$,

construct $\langle M' \rangle$ where

$M' = \text{"On input } x$

Run M on w

if it accepts, accept

else reject

Run $D_x(\langle M' \rangle)$ if it accepts, reject; else accept.

$A_{TM} \leq_{m} E_{TM}$

Therefore E_{TM} is not Turing rec.

Is E_{TM} Turing rec? (Yes)

$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

EQ_{TM} is not rec.

EQ_{TM} is not non-reducible.

$W_{S}: E_{TM} \leq_{m} EQ_{TM}$

$f(\langle M \rangle) = \begin{cases} \langle M_1, M_2 \rangle \text{ s.t. } L(M_1) \geq L(M_2) \\ \text{if } L(M) = \emptyset \end{cases}$

\begin{align*}
\{ \langle M_1, M_2 \rangle \text{ s.t. } L(M_1) \neq L(M_2) \\
\text{if } L(M) \neq \emptyset
\end{align*}
\[f(\langle M \rangle) = \langle M_1, M_2 \rangle \text{ where } M_1 \text{ rejects everything} \]
\[M_2 = M \]

wts: \(EQ_{TM} \) not Turing-rec

sufficient to show \(ATM \leq m\overline{EQ_{TM}} \)
equivalently \(ATM \leq m EQ_{TM} \)

\[f(\langle M, w \rangle) = \begin{cases}
\langle M_1, M_2 \rangle \text{ where } L(M_1) = L(M_2) \\
\langle M_1, M_2 \rangle \text{ where } L(M_1) \neq L(M_2)
\end{cases} \]

if \(M \) accepts

\(EQ_{TM} \) is not T-rec
\(EQ_{TM} \) is not T-rec