CS 33

Caches
Cache Performance Metrics

• Miss rate
 – fraction of memory references not found in cache (misses / accesses)
 = 1 – hit rate
 – typical numbers (in percentages):
 » 3-10% for L1
 » can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit time
 – time to deliver a line in the cache to the processor
 » includes time to determine whether the line is in the cache
 – typical numbers:
 » 1-2 clock cycles for L1
 » 5-20 clock cycles for L2

• Miss penalty
 – additional time required because of a miss
 » typically 50-200 cycles for main memory (trend: increasing!)
Let’s Think About Those Numbers

• Huge difference between a hit and a miss
 – could be 100x, if just L1 and main memory

• Would you believe 99% hit rate is twice as good as 97%?
 – consider:
 cache hit time of 1 cycle
 miss penalty of 100 cycles
 – average access time:
 97% hits: \(.97 \times 1 \text{ cycle} + 0.03 \times 100 \text{ cycles} \approx 4 \text{ cycles}\)
 99% hits: \(.99 \times 1 \text{ cycle} + 0.01 \times 100 \text{ cycles} \approx 2 \text{ cycles}\)

• This is why “miss rate” is used instead of “hit rate”
Locality

- **Principle of Locality:** programs tend to use data and instructions with addresses near or equal to those they have used recently
- **Temporal locality:**
 - recently referenced items are likely to be referenced again in the near future
- **Spatial locality:**
 - items with nearby addresses tend to be referenced close together in time
Locality Example

```
sum = 0;
for (i = 0; i < n; i++)
    sum += a[i];
return sum;
```

- **Data references**
 - reference array elements in succession (stride-1 reference pattern)
 - reference variable sum each iteration

- **Instruction references**
 - reference instructions in sequence.
 - cycle through loop repeatedly

Spatial locality

Temporal locality
Qualitative Estimates of Locality

- **Claim**: being able to look at code and get a qualitative sense of its locality is a key skill for a professional programmer

- **Question**: does this function have good locality with respect to array a?

```c
int sum_array_rows(int a[M][N]){
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];

    return sum;
}
```
Quiz 1

Does this function have good locality with respect to array a?

a) yes
b) no

```c
int sum_array_cols(int a[M][N]) {
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];

    return sum;
}
```
Writing Cache-Friendly Code

• Make the common case go fast
 – focus on the inner loops of the core functions

• Minimize the misses in the inner loops
 – repeated references to variables are good (temporal locality)
 – stride-1 reference patterns are good (spatial locality)

Key idea: our qualitative notion of locality is quantified through our understanding of cache memories
Matrix Multiplication Example

- **Description:**
 - multiply $N \times N$ matrices
 - $O(N^3)$ total operations
 - N reads per source element
 - N values summed per destination

 » but may be able to hold in register

```c
/\* ijk */
for (i=0; i<n; i++) {  
    for (j=0; j<n; j++) {  
        sum = 0.0;  
        for (k=0; k<n; k++)  
            sum += a[i][k] * b[k][j];  
        c[i][j] = sum;  
    }
}

/\* ikj */
for (i=0; i<n; i++) {  
    for (k=0; k<n; k++)  
        r = a[i][k];  
    for (j=0; j<n; j++)  
        c[i][j] += r * b[k][j];  
}
```
Miss-Rate Analysis for Matrix Multiply

• Assume:
 – Block size = 32B (big enough for four 64-bit words)
 – matrix dimension (N) is very large
 » approximate 1/N as 0.0
 – cache is not big enough to hold multiple rows

• Analysis method:
 – look at access pattern of inner loop

\[
C_{ij} = A_{ik} * B_{kj}
\]
Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
 – each row in contiguous memory locations
• Stepping through columns in one row:
 – for (i = 0; i < N; i++)
 sum += a[0][i];
 – accesses successive elements
 – if block size (B) > 4 bytes, exploit spatial locality
 » compulsory miss rate = 4 bytes / B
• Stepping through rows in one column:
 – for (i = 0; i < n; i++)
 sum += a[i][0];
 – accesses distant elements
 – no spatial locality!
 » compulsory miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Inner loop:

- A: Row-wise
- B: Column-wise
- C: Fixed

Misses per inner loop iteration:

- A: 0.25
- B: 1.0
- C: 0.0
Matrix Multiplication (jik)

```c
/* jik */
for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kij)

```c
/* kij */
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Inner loop:
- **A** (i,k) Fixed
- **B** (k,*) Row-wise
- **C** (i,*) Row-wise

Misses per inner loop iteration:
- **A**: 0.0
- **B**: 0.25
- **C**: 0.25
Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Inner loop:
(i,k) (k,*) (i,*)
A B C
Fixed Row-wise Row-wise
Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Inner loop:

- Column-wise: (*,k)
- Fixed: (k,j)
- Column-wise: (*,j)

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misses</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Summary of Matrix Multiplication

ijk (& jik):
- 2 loads, 0 stores
- misses/iter = 1.25

kij (& ikj):
- 2 loads, 1 store
- misses/iter = 0.5

jki (& kji):
- 2 loads, 1 store
- misses/iter = 2.0
Core i7 Matrix Multiply Performance

Cycles per inner loop iteration vs. Array size (n)

- jki / kji
- ijk / jik
- kij / ikj
Matrix Multiplication: More Analysis

/* Multiply n x n matrices a and b */
void mmm(int n, double a[n][n], double b[n][n], double c[n][n]) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i][j] += a[i][k]*b[k][j];
}
Cache-Miss Analysis

• Assume:
 – matrix elements are doubles
 – cache block = 8 doubles
 – cache size C << n (much smaller than n)

• First iteration:
 – n/8 + n = 9n/8 misses

 – afterwards in cache:
 (schematic)
Cache-Miss Analysis

• Assume:
 – matrix elements are doubles
 – cache block = 8 doubles
 – cache size C << n (much smaller than n)

• Second iteration:
 – again:
 \(\frac{n}{8} + n = \frac{9n}{8} \) misses

• Total misses:
 – \(\frac{9n}{8} \times n^2 = \left(\frac{9}{8}\right) \times n^3 \)
/* Multiply n x n matrices a and b */

void mmm(int n, double a[n][n], double b[n][n], double c[n][n]) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i1++)
 for (j1 = j; j1 < j+B; j1++)
 for (k1 = k; k1 < k+B; k1++)
 c[i1][j1] += a[i1][k1]*b[k1][j1];
}
Cache-Miss Analysis

• Assume:
 – cache block = 8 doubles
 – cache size \(C \ll n \) (much smaller than \(n \))
 – three matrix blocks fit into cache: \(3B^2 < C \)

• First (matrix block) iteration:
 – \(B^2/8 \) misses for each block
 – \(2n/B \times B^2/8 = nB/4 \) (omitting matrix \(c \))
 – afterwards in cache (schematic)
Cache-Miss Analysis

• Assume:
 – cache block = 8 doubles
 – cache size $C \ll n$ (much smaller than n)
 – three matrix blocks fit into cache: $3B^2 < C$

• Second (matrix block) iteration:
 – same as first iteration
 – $2n/B \times B^2/8 = nB/4$

• Total misses:
 – $nB/4 \times (n/B)^2 = n^3/(4B)$
Summary

• No blocking: (9/8) * n³
• Blocking: 1/(4B) * n³

• Suggest largest possible block size B, but limit 3B² < C!

• Reason for dramatic difference:
 – matrix multiplication has inherent temporal locality:
 » input data: 3n², computation 2n³
 » every array element used O(n) times!
 – but program has to be written properly
Quiz 2

What is the smallest value of B (in 8-byte doubles) for which the cache-miss analysis works?

a) 1
b) 2
c) 4
d) 8
Blocking vs. \(ikj \)

\[
\begin{align*}
 c & = a \ast b + c \\
 (i,k) & = (k,*) = (i,*)
\end{align*}
\]

\[
\text{\(n^3/(4\times8) \) misses}
\]

\[
\text{\(2\times n^3/8 \) misses}
\]
Blocking vs. ikj

$./matmult_ikj
ikj: 0.608 secs

$./matmult_Blocked
Blocked: 0.880 secs
Why is ikj Faster?

- Prefetching
 - the processor detects sequential (stride-1) accesses to memory and issues loads before they are needed.
Concluding Observations

• Programmer can optimize for cache performance
 – organize data structures appropriately
 – take care in how data structures are accesses
 » nested loop structure
 » blocking is a general technique

• All systems favor “cache-friendly code”
 – getting absolute optimum performance is very platform specific
 » cache sizes, line sizes, associativities, etc.
 – can get most of the advantage with generic code
 » keep working set reasonably small (temporal locality)
 » use small strides (spatial locality)