CS 33

Caches
Cache Memories

- **Cache memories** are small, fast SRAM-based memories managed automatically in hardware
 - hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory
- Typical system structure:
General Cache Organization (S, E, B)

- **E = \(2^e\) lines per set**
- **S = \(2^s\) sets**
- **B = \(2^b\) bytes per cache block (the data)**

Cache size:
\[C = S \times E \times B \text{ data bytes} \]
Cache Read

$E = 2^e$ lines per set

$S = 2^s$ sets

t bits s bits b bits

Address of word:

tag set index block offset

data begins at this offset

• Locate set
• Check if any line in set has matching tag
• Yes + line valid: hit
• Locate data starting at offset

$B = 2^b$ bytes per cache block (the data)
Example: Direct Mapped Cache (E = 1)

Direct mapped: one line per set
Assume: cache block size 8 bytes

Address of int:
\[\text{t bits} \quad 0\ldots01 \quad 100 \]

find set

\[S = 2^5 \text{ sets} \]
Example: Direct Mapped Cache (E = 1)

Direct mapped: one line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

block offset

v tag 0 1 2 3 4 5 6 7
Example: Direct Mapped Cache (E = 1)

Direct mapped: one line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

No match: old line is evicted and replaced
Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

<table>
<thead>
<tr>
<th>Address</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0000₂]</td>
<td>miss</td>
</tr>
<tr>
<td>1</td>
<td>[0001₂]</td>
<td>hit</td>
</tr>
<tr>
<td>7</td>
<td>[0111₂]</td>
<td>miss</td>
</tr>
<tr>
<td>8</td>
<td>[1000₂]</td>
<td>miss</td>
</tr>
<tr>
<td>0</td>
<td>[0000₂]</td>
<td>miss</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>M[0-1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>M[6-7]</td>
</tr>
</tbody>
</table>

\[t=1 \quad s=2 \quad b=1 \]
A Higher-Level Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];

    return sum;
}

int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];

    return sum;
}
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here

32 B = 4 doubles
A Higher-Level Example

```c
int sum_array_rows(double a[16][16]) {
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];

    return sum;
}
```

```c
int sum_array_cols(double a[16][16]) {
    int i, j;
    double sum = 0;

    for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];

    return sum;
}
```
A Higher-Level Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];

    return sum;
}

int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; j < 16; i++)
        for (i = 0; i < 16; j++)
            sum += a[i][j];

    return sum;
}
```
Conflict Misses: Aligned

```c
double dotprod(double x[8], double y[8]) {
    double sum = 0.0;
    int i;

    for (i=0; i<8; i++)
        sum += x[i] * y[i];

    return sum;
}
```

32 B = 4 doubles
Different Alignments

def dotprod(double x[8], double y[8]) {
 double sum = 0.0;
 int i;

 for (i=0; i<8; i++)
 sum += x[i] * y[i];

 return sum;
}
E-way Set-Associative Cache (Here: E = 2)

E = 2: two lines per set
Assume: cache block size 8 bytes

E-way Cache Diagram:
- v: Valid bit
- tag: Cache index
- Address of short int: 0...01 100
- t bits

Compare both
- Valid? + Match: yes = hit
- Block offset

Address of short int: 0...01 100
E-way Set-Associative Cache (Here: E = 2)

E = 2: two lines per set
Assume: cache block size 8 bytes

Address of short int: [t bits 0...01 100]

compare both
correct tags

valid? + match: yes = hit

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), ...

short int (2 Bytes) is here

block offset
Given the address above and the cache contents as shown, what is the value of the int at the given address?

a) 1111
b) 3333
c) 4444
d) 7777
2-Way Set-Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

<table>
<thead>
<tr>
<th>Address</th>
<th>Block</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0000₂],</td>
<td>miss</td>
</tr>
<tr>
<td>1</td>
<td>[0001₂],</td>
<td>hit</td>
</tr>
<tr>
<td>7</td>
<td>[0111₂],</td>
<td>miss</td>
</tr>
<tr>
<td>8</td>
<td>[1000₂],</td>
<td>miss</td>
</tr>
<tr>
<td>0</td>
<td>[0000₂],</td>
<td>hit</td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>Set</th>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>00</td>
<td>M[0-1]</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>M[8-9]</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>01</td>
<td>M[6-7]</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
A Higher-Level Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];

    return sum;
}
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here

32 B = 4 doubles
A Higher-Level Example

```
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}

int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}
```

Ignore the variables sum, i, j

32 B = 4 doubles
A Higher-Level Example

Ignore the variables sum, i, j

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];

    return sum;
}

int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];

    return sum;
}
```

32 B = 4 doubles
Conflict Misses

double dotprod(double x[8], double y[8]) {
 double sum = 0.0;
 int i;

 for (i=0; i<8; i++)
 sum += x[i] * y[i];

 return sum;
}
Intel Core i7 Cache Hierarchy

Processor package

Core 0

Regs
L1 d-cache
L1 i-cache
L2 unified cache

Core 3

Regs
L1 d-cache
L1 i-cache
L2 unified cache

L3 unified cache (shared by all cores)

Main memory

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for all caches
What About Writes?

• Multiple copies of data exist:
 – L1, L2, main memory, disk

• What to do on a write-hit?
 – write-through (write immediately to memory)
 – write-back (defer write to memory until replacement of line)
 » need a dirty bit (line different from memory or not)

• What to do on a write-miss?
 – write-allocate (load into cache, update line in cache)
 » good if more writes to the location follow
 – no-write-allocate (writes immediately to memory)

• Typical
 – write-through + no-write-allocate
 – write-back + write-allocate
Cache Performance Metrics

• Miss rate
 – fraction of memory references not found in cache (misses / accesses)
 = 1 – hit rate
 – typical numbers (in percentages):
 » 3-10% for L1
 » can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit time
 – time to deliver a line in the cache to the processor
 » includes time to determine whether the line is in the cache
 – typical numbers:
 » 1-2 clock cycles for L1
 » 5-20 clock cycles for L2

• Miss penalty
 – additional time required because of a miss
 » typically 50-200 cycles for main memory (trend: increasing!)
Let’s Think About Those Numbers

• Huge difference between a hit and a miss
 – could be 100x, if just L1 and main memory

• Would you believe 99% hit rate is twice as good as 97%?
 – consider:
 cache hit time of 1 cycle
 miss penalty of 100 cycles
 – average access time:
 97% hits: \(0.97 \times 1 \text{ cycle} + 0.03 \times 100 \text{ cycles} \approx 4 \text{ cycles}\)
 99% hits: \(0.99 \times 1 \text{ cycle} + 0.01 \times 100 \text{ cycles} \approx 2 \text{ cycles}\)

• This is why “miss rate” is used instead of “hit rate”
Writing Cache-Friendly Code

• Make the common case go fast
 – focus on the inner loops of the core functions

• Minimize the misses in the inner loops
 – repeated references to variables are good (*temporal locality*)
 – stride-1 reference patterns are good (*spatial locality*)

Key idea: our qualitative notion of locality is quantified through our understanding of cache memories
Miss-Rate Analysis for Matrix Multiply

• Assume:
 – Block size = 32B (big enough for four 64-bit words)
 – matrix dimension (N) is very large
 » approximate 1/N as 0.0
 – cache is not big enough to hold multiple rows

• Analysis method:
 – look at access pattern of inner loop

\[
C_{ij} = A_{ik} \times B_{kj}
\]
Matrix Multiplication Example

- **Description:**
 - multiply N x N matrices
 - $O(N^3)$ total operations
 - N reads per source element
 - N values summed per destination
 - but may be able to hold in register

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Variable `sum` held in register
Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:
 - for (i = 0; i < N; i++)
 sum += a[0][i];
 - accesses successive elements
 - if block size (B) > 4 bytes, exploit spatial locality
 » compulsory miss rate = 4 bytes / B
- Stepping through rows in one column:
 - for (i = 0; i < n; i++)
 sum += a[i][0];
 - accesses distant elements
 - no spatial locality!
 » compulsory miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jik)

```c
/* jik */
for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum
    }
}
```

<table>
<thead>
<tr>
<th>Misses per inner loop iteration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>0.25</td>
</tr>
</tbody>
</table>

Inner loop:
- Row-wise
- Column-wise
- Fixed
Matrix Multiplication (kij)

```c
/* kij */
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (ikj)

```c
/* ikj */
for (i=0; i<n; i++) {
    for (k=0; k<n; k++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misses</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Inner loop:

- Column-wise
- Fixed
- Column-wise
Matrix Multiplication (kji)

```c
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Summary of Matrix Multiplication

ijk (& **jik**):
- 2 loads, 0 stores
- misses/iter = 1.25

kij (& **ikj**):
- 2 loads, 1 store
- misses/iter = 0.5

jki (& **kji**):
- 2 loads, 1 store
- misses/iter = 2.0
Matrix Multiplication: More Analysis

void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n+j] += a[i*n + k]*b[k*n + j];
}
Cache-Miss Analysis

• Assume:
 – matrix elements are doubles
 – cache block = 8 doubles
 – cache size C << n (much smaller than n)

• First iteration:
 – $n/8 + n = 9n/8$ misses
 – afterwards in cache: (schematic)
Cache-Miss Analysis

• Assume:
 – matrix elements are doubles
 – cache block = 8 doubles
 – cache size $C << n$ (much smaller than n)

• Second iteration:
 – again:

 \[
 \frac{n}{8} + n = \frac{9n}{8}
 \]

• Total misses:
 – \[
 9\frac{n}{8} * n^2 = \left(\frac{9}{8}\right) * n^3
 \]
/ * Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}
Cache-Miss Analysis

• Assume:
 – cache block = 8 doubles
 – cache size C << n (much smaller than n)
 – three matrix blocks fit into cache: 3B^2 < C

• First (matrix block) iteration:
 – B^2/8 misses for each block
 – 2n/B * B^2/8 = nB/4 (omitting matrix c)
 – afterwards in cache (schematic)
Cache-Miss Analysis

• Assume:
 – cache block = 8 doubles
 – cache size $C << n$ (much smaller than n)
 – three matrix blocks fit into cache: $3B^2 < C$

• Second (matrix block) iteration:
 – same as first iteration
 – $2n/B \times B^2/8 = nB/4$

• Total misses:
 – $nB/4 \times (n/B)^2 = n^3/(4B)$
Summary

• No blocking: \((9/8) \times n^3\)
• Blocking: \(1/(4B) \times n^3\)

• Suggest largest possible block size B, but limit \(3B^2 < C\)!

• Reason for dramatic difference:
 – matrix multiplication has inherent temporal locality:
 » input data: \(3n^2\), computation \(2n^3\)
 » every array element used \(O(n)\) times!
 – but program has to be written properly
Quiz 2

What is the smallest value of B (in 8-byte doubles) for which the cache-miss analysis works?

a) 1
b) 2
c) 4
d) 8
Concluding Observations

• Programmer can optimize for cache performance
 – how data structures are organized
 – how data are accessed
 » nested loop structure
 » blocking is a general technique

• All systems favor “cache-friendly code”
 – getting absolute optimum performance is very platform specific
 » cache sizes, line sizes, associativities, etc.
 – can get most of the advantage with generic code
 » keep working set reasonably small (temporal locality)
 » use small strides (spatial locality)