CS 33

Caches
Cache Performance Metrics

• Miss rate
 – fraction of memory references not found in cache (misses / accesses)
 = 1 – hit rate
 – typical numbers (in percentages):
 » 3-10% for L1
 » can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit time
 – time to deliver a line in the cache to the processor
 » includes time to determine whether the line is in the cache
 – typical numbers:
 » 1-2 clock cycles for L1
 » 5-20 clock cycles for L2

• Miss penalty
 – additional time required because of a miss
 » typically 50-200 cycles for main memory (trend: increasing!)
Let’s Think About Those Numbers

- Huge difference between a hit and a miss
 - could be 100x, if just L1 and main memory
- Would you believe 99% hit rate is twice as good as 97%?
 - consider:
 cache hit time of 1 cycle
 miss penalty of 100 cycles
 - average access time:
 97% hits: \(0.97 \times 1 \text{ cycle} + 0.03 \times 100 \text{ cycles} \approx 4 \text{ cycles}\)
 99% hits: \(0.99 \times 1 \text{ cycle} + 0.01 \times 100 \text{ cycles} \approx 2 \text{ cycles}\)

- This is why “miss rate” is used instead of “hit rate”
Locality

• **Principle of Locality**: programs tend to use data and instructions with addresses near or equal to those they have used recently

• **Temporal locality**:
 - recently referenced items are likely to be referenced again in the near future

• **Spatial locality**:
 - items with nearby addresses tend to be referenced close together in time
Locality Example

```c
sum = 0;
for (i = 0; i < n; i++)
    sum += a[i];
return sum;
```

- **Data references**
 - reference array elements in succession (stride-1 reference pattern)
 - reference variable `sum` each iteration
 - *Spatial locality*
 - *Temporal locality*

- **Instruction references**
 - reference instructions in sequence.
 - cycle through loop repeatedly
 - *Spatial locality*
 - *Temporal locality*
Qualitative Estimates of Locality

• **Claim**: being able to look at code and get a qualitative sense of its locality is a key skill for a professional programmer

• **Question**: does this function have good locality with respect to array \(a\)?

```c
int sum_array_rows(int a[M][N]){
    int i, j, sum = 0;
    
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    
    return sum;
}
```
Quiz 1

Does this function have good locality with respect to array a?

a) yes
b) no

```c
int sum_array_cols(int a[M][N]) {
    int i, j, sum = 0;
    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}
```
Writing Cache-Friendly Code

• Make the common case go fast
 – focus on the inner loops of the core functions

• Minimize the misses in the inner loops
 – repeated references to variables are good (temporal locality)
 – stride-1 reference patterns are good (spatial locality)

Key idea: our qualitative notion of locality is quantified through our understanding of cache memories
Matrix Multiplication Example

• Description:
 – multiply N x N matrices
 – O(N^3) total operations
 – N reads per source element
 – N values summed per destination
 » but may be able to hold in register

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}
Miss-Rate Analysis for Matrix Multiply

• Assume:
 – Block size = 32B (big enough for four 64-bit words)
 – matrix dimension (N) is very large
 » approximate 1/N as 0.0
 – cache is not big enough to hold multiple rows

• Analysis method:
 – look at access pattern of inner loop
Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:
 - `for (i = 0; i < N; i++)`
 `sum += a[0][i];`
 - accesses successive elements
 - if block size (B) > 4 bytes, exploit spatial locality
 » compulsory miss rate = 4 bytes / B
- Stepping through rows in one column:
 - `for (i = 0; i < n; i++)`
 `sum += a[i][0];`
 - accesses distant elements
 - no spatial locality!
 » compulsory miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jik)

```c
/* jik */
for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Inner loop:

- *(i,k)*
- *(k,*)*
- *(i,*)*

(A, Fixed) (B, Row-wise) (C, Row-wise)
Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Inner loop:

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Inner loop:

- Column-wise
- Fixed
- Column-wise

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
Matrix Multiplication (kji)

```c
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Summary of Matrix Multiplication

for (i=0; i<n; i++)
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }

for (k=0; k<n; k++)
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }

for (j=0; j<n; j++)
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0
Core i7 Matrix Multiply Performance

Array size (n)

Cycles per inner loop iteration

jkj / kji

ijk / jik

kij / ikj
Matrix Multiplication: More Analysis

/* Multiply n x n matrices a and b */
void mmm(int n, double a[n][n], double b[n][n], double c[n][n]) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i][j] += a[i][k]*b[k][j];
}
Cache-Miss Analysis

• Assume:
 – matrix elements are doubles
 – cache block = 8 doubles
 – cache size $C \ll n$ (much smaller than n)

• First iteration:
 – $n/8 + n = 9n/8$ misses

 – afterwards in cache:
 (schematic)

\[
\begin{align*}
\begin{array}{ccc}
\text{n/8} & \text{+} & \text{n} \\
\hline
\text{=} & \text{=} & \text{*} \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
\text{n/8} & \text{+} & \text{n} \\
\hline
\text{=} & \text{=} & \text{*} \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
\text{n/8} & \text{+} & \text{n} \\
\hline
\text{=} & \text{=} & \text{*} \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
\text{n/8} & \text{+} & \text{n} \\
\hline
\text{=} & \text{=} & \text{*} \\
\end{array}
\end{align*}
\]
Cache-Miss Analysis

- Assume:
 - matrix elements are doubles
 - cache block = 8 doubles
 - cache size C << n (much smaller than n)

- Second iteration:
 - again:
 \[\frac{n}{8} + n = \frac{9n}{8} \text{ misses} \]

- Total misses:
 - \[9\frac{n}{8} \times n^2 = (9/8) \times n^3 \]
Blocked Matrix Multiplication

/* Multiply n x n matrices a and b */
void mmm(int n, double a[n][n], double b[n][n], double c[n][n]) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)
 c[i1][j1] += a[i1][k1]*b[k1][j1];
}

Matrix Block size B x B
Cache-Miss Analysis

• Assume:
 – cache block = 8 doubles
 – cache size $C \ll n$ (much smaller than n)
 – three matrix blocks fit into cache: $3B^2 < C$

• First (matrix block) iteration:
 – $B^2/8$ misses for each block
 – $2n/B \times B^2/8 = nB/4$
 (omitting matrix c)

 – afterwards in cache (schematic)
Cache-Miss Analysis

• Assume:
 – cache block = 8 doubles
 – cache size $C \ll n$ (much smaller than n)
 – three matrix blocks fit into cache: $3B^2 < C$

• Second (matrix block) iteration:
 – same as first iteration
 – $2n/B \times B^2/8 = nB/4$

• Total misses:
 – $nB/4 \times (n/B)^2 = n^3/(4B)$
Summary

- No blocking: \((9/8) \times n^3\)
- Blocking: \(1/(4B) \times n^3\)

- Suggest largest possible block size \(B\), but limit \(3B^2 < C\!\)

- Reason for dramatic difference:
 - matrix multiplication has inherent temporal locality:
 » input data: \(3n^2\), computation \(2n^3\)
 » every array element used \(O(n)\) times!
 - but program has to be written properly
Quiz 2

What is the smallest value of B (in 8-byte doubles) for which the cache-miss analysis works?

a) 1
b) 2
c) 4
d) 8
Blocking vs. ikj

\[c = a \times b + c \]

\[n^3/(4\times8) \text{ misses} \]

\[(i,k) \]

\[(k,*) \]

\[(i,*) \]

\[= \]

\[2\times n^3/8 \text{ misses} \]
Blocking vs. ikj

$./matmult_ikj
ikj: 0.608 secs

$./matmult_Blocked
Blocked: 0.880 secs
Why is ikj Faster?

• Prefetching
 – the processor detects sequential (stride-1) accesses to memory and issues loads before they are needed

\[
\begin{align*}
 c & = a \ast b + c \\
 (i, k) & = (k, \ast) + (i, \ast)
\end{align*}
\]
Concluding Observations

• Programmer can optimize for cache performance
 – organize data structures appropriately
 – take care in how data structures are accesses
 » nested loop structure
 » blocking is a general technique

• All systems favor “cache-friendly code”
 – getting absolute optimum performance is very platform specific
 » cache sizes, line sizes, associativities, etc.
 – can get most of the advantage with generic code
 » keep working set reasonably small (temporal locality)
 » use small strides (spatial locality)