Exploiting Caches
Cache Performance Metrics

• Miss rate
 – fraction of memory references not found in cache (misses / accesses) = 1 – hit rate
 – typical numbers (in percentages):
 » 3-10% for L1
 » can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit time
 – time to deliver a line in the cache to the processor
 » includes time to determine whether the line is in the cache
 – typical numbers:
 » 1-2 clock cycles for L1
 » 5-20 clock cycles for L2

• Miss penalty
 – additional time required because of a miss
 » typically 50-200 cycles for main memory (trend: increasing!)
Let’s Think About Those Numbers

• Huge difference between a hit and a miss
 – could be 100x, if just L1 and main memory

• 99% hit rate is twice as good as 97%!
 – consider:
 cache hit time of 1 cycle
 miss penalty of 100 cycles
 – average access time:
 97% hits: \(0.97 \times 1 \text{ cycle} + 0.03 \times 100 \text{ cycles} \approx 4 \text{ cycles}\)
 99% hits: \(0.99 \times 1 \text{ cycle} + 0.01 \times 100 \text{ cycles} \approx 2 \text{ cycles}\)

• This is why “miss rate” is used instead of “hit rate”
Locality

• **Principle of Locality:** programs tend to use data and instructions with addresses near or equal to those they have used recently

• **Temporal locality:**
 – recently referenced items are likely to be referenced again in the near future

• **Spatial locality:**
 – items with nearby addresses tend to be referenced close together in time
Locality Example

- **Data references**
 - reference array elements in succession (stride-1 reference pattern)
 - reference variable `sum` each iteration

- **Instruction references**
 - reference instructions in sequence.
 - cycle through loop repeatedly

```plaintext
sum = 0;
for (i = 0; i < n; i++)
    sum += a[i];
return sum;
```
Does this function have good locality with respect to array a?

a) yes
b) no

```c
int sum_array_cols(int a[M][N]) {
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];

    return sum;
}
```
Writing Cache-Friendly Code

• **Make the common case go fast**
 – focus on the inner loops of the core functions

• **Minimize the misses in the inner loops**
 – repeated references to variables are good (**temporal locality**)
 – stride-1 reference patterns are good (**spatial locality**)
Matrix Multiplication Example

• Description:
 – multiply N x N matrices
 » each element is a double
 – \(O(N^3)\) total operations
 – N reads per source element
 – N values summed per destination
 » but may be able to hold in register

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}

/* ikj */
for (i=0; i<n; i++) {
    for (k=0; k<n; k++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}```
Miss-Rate Analysis for Matrix Multiply

• Assume:
  – Block size = 64B (big enough for eight 64-bit words)
  – matrix dimension (N) is very large
    » approximate 1/N as 0.0
  – cache is not big enough to hold multiple rows

• Analysis method:
  – look at access pattern of inner loop

\[
C_{i,j} = \sum_{k} A_{i,k} \times B_{k,j}
\]
Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
  - each row in contiguous memory locations
- Stepping through columns in one row:
  - \texttt{for} \ (i = 0; i < N; i++)
    \begin{verbatim}
    sum += a[0][i];
    \end{verbatim}
  - accesses successive elements
  - if block size (B) > 8 bytes, exploit spatial locality
    » compulsory miss rate = \( \frac{8 \text{ bytes}}{B} \)
- Stepping through rows in one column:
  - \texttt{for} \ (i = 0; i < n; i++)
    \begin{verbatim}
    sum += a[i][0];
    \end{verbatim}
  - accesses distant elements
  - no spatial locality!
    » compulsory miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}

Misses per inner loop iteration:

\[
\begin{array}{ccc}
\text{A} & \text{B} & \text{C} \\
0.125 & 1.0 & 0.0 \\
\end{array}
\]
Matrix Multiplication (jik)

```c
/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum
 }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.125</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Inner loop:

- **Row-wise**
- **Column-wise**
- **Fixed**
Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}
```

Inner loop:
- Fixed
- Row-wise
- Row-wise

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.125</td>
<td>0.125</td>
</tr>
</tbody>
</table>
Matrix Multiplication (ikj)

```c
/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}
```

Inner loop:
- (i,k)
- (k,*)
- (i,*)

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misses</td>
<td>0.0</td>
<td>0.125</td>
<td>0.125</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kji)

```c
/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Summary of Matrix Multiplication

ijk (& jik):
- 2 loads, 0 stores
- misses/iter = 1.125

kij (& ikj):
- 2 loads, 1 store
- misses/iter = 0.25

jki (& kji):
- 2 loads, 1 store
- misses/iter = 2.0
Core i7 Matrix Multiply Performance

Cycles per inner loop iteration vs. Array size (n)

- jki / kji
- ijk / jik
- kij / ikj

CS33 Intro to Computer Systems
XVII–18
Matrix Multiplication: More Analysis

/* Multiply n x n matrices a and b */

void mmm(int n, double a[n][n], double b[n][n], double c[n][n]) {
    int i, j, k;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            for (k = 0; k < n; k++)
                c[i][j] += a[i][k]*b[k][j];
}
Cache-Miss Analysis

• Assume:
  – matrix elements are doubles
  – cache block = 8 doubles
  – cache size C << n (much smaller than n)

• First iteration:
  – n/8 + n = 9n/8 misses
  – afterwards in cache: (schematic)
Cache-Miss Analysis

• Assume:
  – matrix elements are doubles
  – cache block = 8 doubles
  – cache size C << n (much smaller than n)

• Second iteration:
  – again:
    \[ \frac{n}{8} + n = \frac{9n}{8} \text{ misses} \]

• Total misses:
  – \[ 9\frac{n}{8} \times n^2 = \left(\frac{9}{8}\right) \times n^3 \]
Blocked Matrix Multiplication

/* Multiply n x n matrices a and b */
void mmm(int n, double a[n][n], double b[n][n], double c[n][n]) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
        for (j = 0; j < n; j+=B)
            for (k = 0; k < n; k+=B)
                /* B x B mini matrix multiplications */
                    for (i1 = i; i1 < i+B; i1++)
                        for (j1 = j; j1 < j+B; j1++)
                            for (k1 = k; k1 < k+B; k1++)
                                c[i1][j1] += a[i1][k1]*b[k1][j1];
}

Matrix Block size B x B
Cache-Miss Analysis

• Assume:
  – cache block = 8 doubles
  – cache size $C \ll n$ (much smaller than $n$)
  – three matrix blocks fit into cache: $3B^2 < C$

• First (matrix block) iteration:
  – $B^2/8$ misses for each block
  – $2n/B \times B^2/8 = nB/4$ (omitting matrix c)
  – afterwards in cache (schematic)
Cache-Miss Analysis

- Assume:
  - cache block = 8 doubles
  - cache size $C \ll n$ (much smaller than $n$)
  - three matrix blocks fit into cache: $3B^2 < C$

- Second (matrix block) iteration:
  - same as first iteration
  - $2n/B \times B^2/8 = nB/4$

- Total misses:
  - $nB/4 \times (n/B)^2 = n^3/(4B)$

Matrix Block size $B \times B$
Summary

• No blocking: \((9/8) * n^3\)
• Blocking: \(1/(4B) * n^3\)

• Suggest largest possible block size \(B\), but limit \(3B^2 < C\)!

• Reason for dramatic difference:
  – matrix multiplication has inherent temporal locality:
    » input data: \(3n^2\), computation \(2n^3\)
    » every array element used \(O(n)\) times!
  – but program has to be written properly
Our analysis assumes a cache line of 64 bytes. What is the smallest value of $B$ (in 8-byte doubles) for which the cache-miss analysis works?

a) 1  
b) 2  
c) 4  
d) 8
Blocking vs. ikj

\[
\begin{align*}
\text{c} & = \text{a} \ast \text{b} + \text{c} \\
\text{(i,k)} & = \text{(k,*)} \Rightarrow 2n^3/8 \text{ misses} \\
\end{align*}
\]

\[
n^3/(4*8) \text{ misses}
\]
Blocking vs. ikj

$ ./matmult_Blocked
Blocked: .880 secs

$ ./matmult_ikj
ikj: .608 secs
Why is ikj Faster?

• Prefetching
  – the processor detects sequential (stride-1) accesses to memory and issues loads before they are needed
Concluding Observations

• Programmer can optimize for cache performance
  – organize data structures appropriately
  – take care in how data structures are accessed
    » nested loop structure
    » blocking is a general technique

• All systems favor “cache-friendly code”
  – getting absolute optimum performance is very platform specific
    » cache sizes, line sizes, associativities, etc.
  – can get most of the advantage with generic code
    » keep working set reasonably small (temporal locality)
    » use small strides (spatial locality)