Many of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition and are provided from the website of Carnegie-Mellon University, course 15-213, taught by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated “Supplied by CMU” in the notes section of the slides.
### 2-Way Set-Associative Cache Simulation

<table>
<thead>
<tr>
<th>t=2</th>
<th>s=1</th>
<th>b=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

<table>
<thead>
<tr>
<th>Addr</th>
<th>Tag</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[0000],</td>
<td>miss</td>
</tr>
<tr>
<td>1</td>
<td>[0001],</td>
<td>hit</td>
</tr>
<tr>
<td>7</td>
<td>[0111],</td>
<td>miss</td>
</tr>
<tr>
<td>8</td>
<td>[1000],</td>
<td>miss</td>
</tr>
<tr>
<td>0</td>
<td>[0000],</td>
<td>hit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>M[0-1]</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>M[8-9]</td>
</tr>
<tr>
<td>Set 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>M[6-7]</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplied by CMU.
A Higher-Level Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}
```

Ignore the variables `sum, i, j`

assume: cold (empty) cache, `a[0][0]` goes here

32 B = 4 doubles

---

Supplied by CMU.
A Higher-Level Example

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}

int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;
    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}
```

The cache still holds two rows of the matrix, but each row may go into one of two different cache lines. In the slide, the first row goes into the first lines of the cache sets, the second row goes into the second lines of the cache sets.
There is still a cache miss on each access.
With a 2-way set-associative cache, our dot-product example runs quickly even if the two arrays have the same alignment.
The L3 cache is known as the *last-level cache* (LLC) in the Intel documentation.

One concern is whether what’s contained in, say, the L1 cache is also contained in the L2 cache. If so, caching is said to be *inclusive*. If what’s contained in the L1 cache is definitely not contained in the L2 cache, caching is said to be *exclusive*. An advantage of exclusive caches is that the total cache capacity is the sum of the sizes of each of the levels, whereas for inclusive caches, the total capacity is just that of the largest. An advantage of inclusive caches is that what’s been brought into the cache hierarchy by one core is available to the other core.

AMD processors tend to have exclusive caches; Intel processors tend to have inclusive caches.
Most current processors use the write-back/write-allocate approach. This causes some (surmountable) difficulties for multi-core processors that have a separate cache for each core.
Cache Performance Metrics

- Miss rate
  - fraction of memory references not found in cache
    (misses / accesses)
    \( = 1 - \text{hit rate} \)
  - typical numbers (in percentages):
    » 3-10\% for L1
    » can be quite small (e.g., < 1\%) for L2, depending on size, etc.

- Hit time
  - time to deliver a line in the cache to the processor
    » includes time to determine whether the line is in the cache
  - typical numbers:
    » 1-2 clock cycles for L1
    » 5-20 clock cycles for L2

- Miss penalty
  - additional time required because of a miss
    » typically 50-200 cycles for main memory (trend: increasing!)
Let’s Think About Those Numbers

• **Huge difference between a hit and a miss**
  – could be 100x, if just L1 and main memory

• **99% hit rate is twice as good as 97%!**
  – consider:
    cache hit time of 1 cycle
    miss penalty of 100 cycles
  – average access time:
    97% hits: \(.97 \times 1 \text{ cycle} + 0.03 \times 100 \text{ cycles} \approx 4 \text{ cycles}\)
    99% hits: \(.99 \times 1 \text{ cycle} + 0.01 \times 100 \text{ cycles} \approx 2 \text{ cycles}\)

• **This is why “miss rate” is used instead of “hit rate”**
Locality

- **Principle of Locality:** programs tend to use data and instructions with addresses near or equal to those they have used recently

- **Temporal locality:**
  - recently referenced items are likely to be referenced again in the near future

- **Spatial locality:**
  - items with nearby addresses tend to be referenced close together in time

Supplied by CMU.
Locality Example

```
sum = 0;
for (i = 0; i < n; i++)
    sum += a[i];
return sum;
```

- **Data references**
  - reference array elements in succession (stride-1 reference pattern)
  - reference variable `sum` each iteration  
    - **Spatial locality**
    - **Temporal locality**

- **Instruction references**
  - reference instructions in sequence.
  - cycle through loop repeatedly
    - **Spatial locality**
    - **Temporal locality**
Quiz 1

Does this function have good locality with respect to array a?

a) yes
b) no

```c
int sum_array_cols(int a[M][N]) {
    int i, j, sum = 0;
    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}
```

Supplied by CMU.
Writing Cache-Friendly Code

- Make the common case go fast
  - focus on the inner loops of the core functions

- Minimize the misses in the inner loops
  - repeated references to variables are good (temporal locality)
  - stride-1 reference patterns are good (spatial locality)
Matrix Multiplication Example

• Description:
  – multiply N x N matrices
    » each element is a double
  – O(N^3) total operations
  – N reads per source element
  – N values summed per destination
    » but may be able to hold in register

```c
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];
  }
}
```

Based on slides supplied by CMU.
Miss-Rate Analysis for Matrix Multiply

• **Assume:**
  - Block size = 64B (big enough for eight 64-bit words)
  - matrix dimension (N) is very large
    » approximate 1/N as 0.0
  - cache is not big enough to hold multiple rows

• **Analysis method:**
  - look at access pattern of inner loop

Supplied by CMU.
Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
  - each row in contiguous memory locations
- Stepping through columns in one row:
  - `for` (i = 0; i < N; i++)
    sum += a[0][i];
  - accesses successive elements
  - if block size (B) > 8 bytes, exploit spatial locality
    » compulsory miss rate = 8 bytes / Block
- Stepping through rows in one column:
  - `for` (i = 0; i < n; i++)
    sum += a[i][0];
  - accesses distant elements
  - no spatial locality!
    » compulsory miss rate = 1 (i.e. 100%)
Assume we are multiplying arrays of doubles, thus each element is eight bytes long, and thus a cache line holds eight matrix elements.
Matrix Multiplication (jik)

```c
/* jik */
for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum
    }
}
```

**Misses per inner loop iteration:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.125</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Supplied by CMU.
Matrix Multiplication (kij)

```c
/* kij */
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Inner loop:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.125</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Supplied by CMU.
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++) {
    for (k=0; k<n; k++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.125</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Supplied by CMU.
Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

**Inner loop:**

- *(,k) Column-wise
- (k,j) Fixed
- (*,j) Column-wise

**Misses per inner loop iteration:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Supplied by CMU.
Matrix Multiplication (kji)

```c
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

**Inner loop:**

- *(k)*
- *(k,j)*
- *(i)*

**Misses per inner loop iteration:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Supplied by CMU.
Summary of Matrix Multiplication

for (i=0; i<n; i++)
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }

ijk (& jk):
• 2 loads, 0 stores
• misses/iter = 1.125

for (k=0; k<n; k++)
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.25

for (j=0; j<n; j++)
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0
Supplied by CMU.
Matrix Multiplication: More Analysis

```c
/* Multiply n x n matrices a and b */
void mmm(int n, double a[n][n], double b[n][n], double c[n][n]) {
    int i, j, k;
    for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
            for (k = 0; k < n; k++)
                c[i][j] += a[i][k]*b[k][j];
}
```

Supplied by CMU.

We're now going to look at a somewhat different approach towards better cache utilization.
Using the ijk approach, there will be $n/8$ misses when accessing the first row of A and $n$ misses when accessing the first column of B. After the first iteration of the inner loop, what’s shown in red is in the cache.
Supplied by CMU.

For the second iteration of the inner loop, there will again be $9n/8$ cache misses. What’s shown in red will be in cache when the iteration completes.

Continuing this analysis, we can see that the total number of misses is $(9/8)n^3$.

But keep in mind that after each iteration, there’s a fair amount in the cache that won’t be used.
Keeping in mind what was left over in the cache after each iteration, as shown in the previous two slides, let’s reorganize the computation into six nested loops, rather than three. The outer loops are as before, except that at each iteration they increase by some constant B. They are effectively breaking up the matrix into “mini matrices” of size BxB. We had three additional inner loops to compute the products of these mini matrices.
Supplied by CMU.

Each mini matrix is B x B in size. Each reference to memory fetches an entire cache block (of 8 8-byte double-precision floating-point values). Thus with eight memory fetches, we bring an entire mini matrix into the cache. We assume the cache is large enough to hold three of these mini matrices, thus the computation of the product of two of them can be done in the cache.

Note that each row and column consists of n/B blocks.

We now repeat our previous analysis, this time with the mini matrices
Supplied by CMU.

Note that the result matrix contains \((n/B)^2\) blocks, thus there will be a total of \((n/B)^2\) iterations.
Summary

- No blocking: \((9/8) \times n^3\)
- Blocking: \(1/(4B) \times n^3\)

- Suggest largest possible block size \(B\), but limit \(3B^2 < C\)!

- Reason for dramatic difference:
  - matrix multiplication has inherent temporal locality:
    » input data: \(3n^2\), computation \(2n^3\)
    » every array element used \(O(n)\) times!
  - but program has to be written properly

Supplied by CMU.
Quiz 2

Our analysis assumes a cache line of 64 bytes. What is the smallest value of B (in 8-byte doubles) for which the cache-miss analysis works? (Hint: each fetch of memory retrieves a complete cache line.)

a) 1  
b) 2  
c) 4  
d) 8
On sunlab machines, the cache-block size is 64 bytes, or 8 doubles. For the blocked-matrix approach, if we have $B=8$, then the expected number of misses is $n^3/32$. For the ikj approach, each reference to memory fetches 8 doubles, thus there are cache misses on $1/8$ of the references to matrix elements. The inner loop is executed $n^3$ times, with two references per iteration. Thus the expected number of misses is $n^3/4$. 
When run on sunlab machines for 1024x1024 matrices, the “ikj” approach to matrix multiplication out performs the blocked approach by over 60%.
The ikj approach provides ample opportunities for prefetching, which the blocking approach does not. The processor does such a good job with prefetching that the delays due to cache misses are very much reduced. While there may be a cache miss on an array element, the fetching of the element from memory has already been started and thus the delay is short.
Concluding Observations

• **Programmer can optimize for cache performance**
  – organize data structures appropriately
  – take care in how data structures are accesses
    » nested loop structure
    » blocking is a general technique

• **All systems favor “cache-friendly code”**
  – getting absolute optimum performance is very platform specific
    » cache sizes, line sizes, associativities, etc.
  – can get most of the advantage with generic code
    » keep working set reasonably small (temporal locality)
    » use small strides (spatial locality)