CS 33
Memory Hierarchy I
Random-Access Memory (RAM)

• Key features
 – RAM is traditionally packaged as a chip
 – basic storage unit is normally a cell (one bit per cell)
 – multiple RAM chips form a memory

• Static RAM (SRAM)
 – each cell stores a bit with a four- or six-transistor circuit
 – retains value indefinitely, as long as it is kept powered
 – relatively insensitive to electrical noise (EMI), radiation, etc.
 – faster and more expensive than DRAM

• Dynamic RAM (DRAM)
 – each cell stores bit with a capacitor; transistor is used for access
 – value must be refreshed every 10-100 ms
 – more sensitive to disturbances (EMI, radiation,…) than SRAM
 – slower and cheaper than SRAM
SRAM vs DRAM Summary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>4 or 6</td>
<td>1X</td>
<td>No</td>
<td>Maybe</td>
<td>100x</td>
<td>Cache memories</td>
</tr>
<tr>
<td>DRAM</td>
<td>1</td>
<td>10X</td>
<td>Yes</td>
<td>Yes</td>
<td>1X</td>
<td>Main memories, frame buffers</td>
</tr>
</tbody>
</table>

- **EDC** = error detection and correction
 - to cope with noise, etc.
Conventional DRAM Organization

- $d \times w$ DRAM:
 - dw total bits organized as d supercells of size w bits
Reading DRAM Supercell (2,1)

Step 1(a): row access strobe (RAS) selects row 2
Step 1(b): row 2 copied from DRAM array to row buffer
Reading DRAM Supercell (2,1)

Step 2(a): column access strobe (CAS) selects column 1
Step 2(b): supercell (2,1) copied from buffer to data lines, and eventually back to the CPU

![Diagram of DRAM Supercell and Memory Controller](image)
Memory Modules

64 MB memory module consisting of eight 8Mx8 DRAMs

addr (row = i, col = j)

64-bit doubleword at main memory address A

Memory controller

64-bit doubleword
Enhanced DRAMs

- Basic DRAM cell has not changed since its invention in 1966
 - commercialized by Intel in 1970
- DRAM cores with better interface logic and faster I/O:
 - synchronous DRAM (SDRAM)
 - uses a conventional clock signal instead of asynchronous control
 - allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
 - double data-rate synchronous DRAM (DDR SDRAM)
 - DDR1
 - twice as fast
 - DDR2
 - four times as fast
 - DDR3
 - eight times as fast
Enhanced DRAMs

- SDR: n B/sec
- DDR1: 2n B/sec
- DDR2: 4n B/sec
- DDR3: 8n B/sec
Quiz 1

A program is loading randomly selected bytes from memory. These bytes will be delivered to the processor on a DDR3 system \(n \) times faster than on an SDR system, where \(n \) is:

a) 1
b) 2
c) 4
d) 8
Nonvolatile Memories

• DRAM and SRAM are volatile memories
 – lose information if powered off
• Nonvolatile memories retain value even if powered off
 – read-only memory (ROM): programmed during production
 – programmable ROM (PROM): can be programmed once
 – eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
 – electrically eraseable PROM (EEPROM): electronic erase capability
 – flash memory: EEPROMs with partial (sector) erase capability
 » wears out after about 100,000 erasings
• Uses for nonvolatile memories
 – firmware programs stored in a ROM (BIOS, controllers for disks, network cards, graphics accelerators, security subsystems,…)
 – solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, laptops,…)
 – disk caches
Traditional Bus Structure Connecting CPU and Memory

- A **bus** is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.
Memory Read Transaction (1)

- CPU places address A on the memory bus

Load operation: `movl A, %eax`
Memory Read Transaction (2)

- Main memory reads A from the memory bus, retrieves word x, and places it on the bus

Load operation: `movl A, %eax`
Memory Read Transaction (3)

- CPU reads word x from the bus and copies it into register %eax

Load operation: movl A, %eax
Memory Write Transaction (1)

• CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive

\[
\text{Store operation: } \text{movl} \ %\text{eax, A}
\]
Memory Write Transaction (2)

- CPU places data word y on the bus

Store operation: `movl %eax, A`
Memory Write Transaction (3)

- Main memory reads data word y from the bus and stores it at address A

```c
movl %eax, A
```

```
<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>%eax</td>
</tr>
<tr>
<td>y</td>
</tr>
</tbody>
</table>

 ALU

 register file

 Bus interface

 I/O bridge

 main memory

 $y$
What’s Inside A Disk Drive?

Spindle
Arm
Actuator
Platters
Electronics (including a processor and memory!)
SCSI connector

Image courtesy of Seagate Technology
Disk Geometry

- Disks consist of **platters**, each with two **surfaces**
- Each surface consists of concentric rings called **tracks**
- Each track consists of **sectors** separated by **gaps**
Disk Geometry (Multiple-Platter View)

- Aligned tracks form a cylinder
Disk Capacity

• **Capacity**: maximum number of bits that can be stored
  – capacity expressed in units of gigabytes (GB), where
    \[ 1 \text{ GB} = 2^{30} \text{ Bytes} \approx 10^9 \text{ Bytes} \]

• Capacity is determined by these technology factors:
  – **recording density** (bits/in): number of bits that can be squeezed into a 1 inch segment of a track
  – **track density** (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment
  – **areal density** (bits/in²): product of recording and track density

• Modern disks partition tracks into disjoint subsets called **recording zones**
  – each track in a zone has the same number of sectors, determined by the circumference of innermost track
  – each zone has a different number of sectors/track
Computing Disk Capacity

Capacity = (# bytes/sector) x (avg. # sectors/track) x
(# tracks/surface) x (# surfaces/platter) x
(# platters/disk)

Example:
- 512 bytes/sector
- 600 sectors/track (on average)
- 40,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

Capacity = 512 x 600 x 40000 x 2 x 5
= 122,280,000,000
= 113.88 GB
Disk Operation (Single-Platter View)

The disk surface spins at a fixed rotational rate.

The read/write head is attached to the end of the arm and flies over the disk surface on a thin cushion of air.

By moving radially, the arm can position the read/write head over any track.
Disk Operation (Multi-Platter View)

Read/write heads move in unison from cylinder to cylinder

Arm

Spindle
Disk Structure: Top View of Single Platter

Surface organized into tracks

Tracks divided into sectors
Disk Access

Head in position above a track
Disk Access

Rotation is counter-clockwise
Disk Access – Read

About to read blue sector
Disk Access – Read

After BLUE read

After reading blue sector
Disk Access – Read

After BLUE read

Red request scheduled next
Disk Access – Seek

Seek to red’s track
Disk Access – Rotational Latency

After BLUE read

Seek for RED

Rotational latency

Wait for red sector to rotate around
Disk Access – Read

After BLUE read

Seek for RED

Rotational latency After RED read

Complete read of red
Disk Access – Service Time Components

After BLUE read
Data transfer

Seek for RED
Seek

Rotational latency
Rotational latency

After RED read
Data transfer
Disk Access Time

- Average time to access some target sector approximated by:
  - \( T_{\text{access}} = T_{\text{avg seek}} + T_{\text{avg rotation}} + T_{\text{avg transfer}} \)
- **Seek time** \((T_{\text{avg seek}})\)
  - time to position heads over cylinder containing target sector
  - typical \( T_{\text{avg seek}} \) is 3–9 ms
- **Rotational latency** \((T_{\text{avg rotation}})\)
  - time waiting for first bit of target sector to pass under r/w head
  - typical rotation speed \( R = 7200 \text{ RPM} \)
  - \( T_{\text{avg rotation}} = \frac{1}{2} \times \frac{1}{R} \times 60 \text{ sec/1 min} \)
- **Transfer time** \((T_{\text{avg transfer}})\)
  - time to read the bits in the target sector
  - \( T_{\text{avg transfer}} = \frac{1}{R} \times \frac{1}{(\text{avg # sectors/track})} \times 60 \text{ secs/1 min} \)
Disk Access Time Example

• Given:
  – rotational rate = 7,200 RPM
  – average seek time = 9 ms
  – avg # sectors/track = 600

• Derived:
  – $T_{avg \ rotation} = \frac{1}{2} \times \frac{60 \ sec}{7200 \ RPM} \times 1000 \ ms/sec = 4 \ ms$
  – $T_{avg \ transfer} = \frac{60}{7200} \ RPM \times \frac{1}{600} \ sects/track \times 1000 \ ms/sec = 0.014 \ ms$
  – $T_{access} = 9 \ ms + 4 \ ms + 0.014 \ ms$

• Important points:
  – access time dominated by seek time and rotational latency
  – first bit in a sector is the most expensive, the rest are free
  – SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
    » disk is about 40,000 times slower than SRAM
    » 2,500 times slower than DRAM
Quiz 2

Assuming a 5-inch diameter disk spinning at 10,000 RPM, what is the approximate speed at which the outermost track is moving?

a) faster than a speeding bullet (i.e., supersonic)
b) roughly the speed of a pretty fast car (250 kph/155 mph)
c) roughly the speed of a pretty slow car (50 mph)
d) roughly the speed of a world-class marathoner (13.1 mph)