Most of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition and are provided from the website of Carnegie-Mellon University, course 15-213, taught by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated “Supplied by CMU” in the notes section of the slides.
Supplied by CMU.
Superscalar Processor

- **Definition:** A superscalar processor can issue and execute *multiple instructions in one cycle*
 - instructions are retrieved from a sequential instruction stream and are usually scheduled dynamically
 » instructions may be executed *out of order*
- **Benefit:** without programming effort, superscalar processors can take advantage of the *instruction-level parallelism* that most programs have
- Most CPUs since about 1998 are superscalar
- Intel: since Pentium Pro (1995)
Multiple Operations per Instruction

- `addl %eax, %edx`
 - a single operation
- `addl %eax, 4(%edx)`
 - three operations
 - load value from memory
 - add to it the contents of %eax
 - store result in memory
Instruction-Level Parallelism

- `addl 4(%eax), %eax
 addl %ebx, %edx`
 - can be executed simultaneously: completely independent
- `addl 4(%eax), %ebx
 addl %ebx, %edx`
 - can also be executed simultaneously, but some coordination is required
Note that the first three instructions are floating-point instructions, and %xmm0 is a floating-point register. We will discuss x86 floating point in an upcoming lecture.
Speculative Execution

80489f3: movl $0x1,%ecx
80489f8: xorl %edx,%edx
80489fa: cmpl %esi,%edx
80489fc: jnl 8048a25
80489fe: movl %esi,%esi
8048a00: imull (%eax,%edx,4),%ecx

perhaps execute these instructions
Nehalem CPU

- **Multiple instructions can execute in parallel**
 1. load, with address computation
 2. store, with address computation
 3. simple integer (one may be branch)
 4. complex integer (multiply/divide)
 5. FP Multiply
 6. FP Add

- **Some instructions take > 1 cycle, but can be pipelined**

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Latency</th>
<th>Cycles/Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load/Store</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Integer Add</td>
<td>1</td>
<td>.33</td>
</tr>
<tr>
<td>Integer Multiply</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Integer/Long Divide</td>
<td>11–21</td>
<td>11–21</td>
</tr>
<tr>
<td>Single/Double FP Multiply</td>
<td>4/5</td>
<td>1</td>
</tr>
<tr>
<td>Single/Double FP Add</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Single/Double FP Divide</td>
<td>10–23</td>
<td>10–23</td>
</tr>
</tbody>
</table>

"Nehalem" is Intel’s code name for its Core I7 processor design.
x86-64 Compilation of Combine4

- Inner loop (case: integer multiply)

```assembly
.L519:
imull (%eax, %rdx, 4), %ecx       # Loop: t = t * d[i]
addq $1, %rdx                      # i++
 cmpq %rdx, %rbp                   # Compare length: i
 jg .L519                          # If >, goto Loop
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th></th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
<td>Add</td>
</tr>
<tr>
<td>Combine4</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Latency bound</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Throughput</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Supplied by CMU.
This is Figure 5.13 of Bryant and O’Hallaron. It shows the code for the single-precision floating-point version of our example.
These are Figures 5.14 a and b of Bryant and O'Hallaron.
Here we modify the graph of the previous slide to show the relative times required of \textit{mul}, \textit{load}, and \textit{add}.
Data Flow Over Multiple Iterations

This is Figure 5.15 of Bryant and O'Hallaron.
Without pipelining, the data flow would appear as shown in the slide.
Pipelined Data-Flow Over Multiple Iterations
Since the loads can be pipelined, it’s clear that the multiplies form the critical path. (Note that the multiplies cannot be pipelined since each subsequent multiply depends on the result of the previous.)
Since the multiplies form the critical path, here we focus only on them.
Loop Unrolling

```c
void unroll2x(vec_ptr_t v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x = (x OP d[i]) OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        x = x OP d[i];
    }
    *dest = x;
}
```

• Perform 2x more useful work per iteration
Loop Unrolling

```c
void unroll2x(vec_ptr_t vec, data_t *dest)
{
    int length = vec_length;
    int limit = length-1;
    data_t *d = get_vec_start(vec);
    data_t x = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2)
    {
        x = (x OP d[i]) OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++)
    {
        x = x OP d[i];
    }
    *dest = x;
}
```

• Perform 2x more useful work per iteration

Quiz 1

Does it speed things up?

a) yes

b) no

Supplied by CMU.
What the compiler does for the case of integer multiplication is to apply reassociation, discussed in the next slide.
Loop Unrolling with Reassociation

```c
void unroll2xra(vec_ptr_t v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x = x OP d[i] OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        x = x OP d[i];
    }
    *dest = x;
}
```

- Can this change the result of the computation?
- Yes, for FP. *Why?
Effect of Reassociation

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Combine4</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Unroll 2x</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Unroll 2x, reassociate</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Latency bound</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Throughput bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Nearly 2x speedup for int *, FP +, FP *
 - reason: breaks sequential dependency
    ```plaintext
    x = x OP (d[i] OP d[i+1]);
    ```
 - why is that? (next slide)
Reassociated Computation

- What changed:
 - ops in the next iteration can be started early (no dependency)

- Overall Performance
 - N elements, D cycles latency/op
 - should be \((N/2+1)D\) cycles:
 \[\text{CPE} = D/2\]
 - measured CPE slightly worse for FP mult

Supplied by CMU.
Supplied by CMU.

Loop Unrolling with Separate Accumulators

```c
void unroll2xp2x(vec_ptr_t v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length/2;
    data_t *d = get_vec_start(v);
    data_t x0 = IDENT;
    data_t x1 = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x0 = x0 OP d[i];
        x1 = x1 OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        x0 = x0 OP d[i];
    }
    *dest = x0 OP x1;
}
```

- Different form of reassociation
Effect of Separate Accumulators

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Combine4</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Unroll 2x</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Unroll 2x, reassociate</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Unroll 2x parallel 2x</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Latency bound</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Throughput bound</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- 2x speedup (over unroll2x) for int *, FP +, FP *
 - breaks sequential dependency in a “cleaner,” more obvious way

\[
\begin{align*}
x_0 &= x_0 \text{ OP } d[i]; \\
x_1 &= x_1 \text{ OP } d[i+1];
\end{align*}
\]

Supplied by CMU.
Separate Accumulators

\[x_0 = x_0 \text{ OP } d[i]; \]
\[x_1 = x_1 \text{ OP } d[i+1]; \]

- **What changed:**
 - two independent “streams” of operations

- **Overall Performance**
 - N elements, D cycles latency/op
 - should be \((N/2+1)*D\) cycles:
 - \(\text{CPE} = D/2\)
 - CPE matches prediction!

What Now?

Supplied by CMU.
Quiz 2

With 3 accumulators there will be 3 independent streams of instructions; with 4 accumulators 4 independent streams of instructions, etc. Thus with n accumulators we can have a speedup of $O(n)$, as long as n is no greater than the number of available registers.

a) true
b) false
Unrolling & Accumulating

• Idea
 – can unroll to any degree L
 – can accumulate K results in parallel
 – L must be multiple of K

• Limitations
 – diminishing returns
 » cannot go beyond throughput limitations of execution units
 – large overhead for short lengths
 » finish off iterations sequentially

Supplied by CMU.
Performance

- K-way loop unrolling with K accumulators
Achievable Performance

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Scalar optimum</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Latency bound</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Throughput bound</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- Limited only by throughput of functional units
- Up to 29X improvement over original, unoptimized code

Supplied by CMU.
Supplied by CMU.

We’ll look at vector instructions in an upcoming lecture.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Integer</th>
<th></th>
<th>Double FP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Scalar optimum</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Vector optimum</td>
<td>0.25</td>
<td>0.53</td>
<td>0.53</td>
<td>0.57</td>
</tr>
<tr>
<td>Latency bound</td>
<td>1.00</td>
<td>3.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Throughput bound</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Vec throughput bound</td>
<td>0.25</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

- Make use of SSE Instructions
 - parallel operations on multiple data elements
What About Branches?

- **Challenge**
 - instruction control unit must work well ahead of execution unit to generate enough operations to keep EU busy

```
80489f3: movl $0x1,%ecx
80489f8: xorl %edx,%edx
80489fa: cmpl %esi,%edx
80489fc: jnl 8048a25
80489fe: movl %esi,%esi
8048a00: imull (%eax,%edx,4),%ecx
```

- when it encounters conditional branch, cannot reliably determine where to continue fetching

Supplied by CMU.
Branch Outcomes

- When encounter conditional branch, cannot determine where to continue fetching
 - branch taken: transfer control to branch target
 - branch not-taken: continue with next instruction in sequence
- Cannot resolve until outcome determined by branch/integer unit

```
80489f3:  movl  $0x1,%ecx
80489f8:  xorl  %edx,%edx
80489fa:  cmpl  %esi,%edx
80489fc:  jnl   8048a25
80489fe:  movl  %esi,%esi
8048a00:  imull (%eax,%edx,4),%ecx
```

Supplied by CMU.
Branch Prediction

- Idea
 - guess which way branch will go
 - begin executing instructions at predicted position
 » but don’t actually modify register or memory data

```
80489f3:  movl  $0x1,%ecx
80489f8:  xorl  %edx,%edx
80489fa:  cmpl  %esi,%edx
80489fc:  jnl   8048a25
...
```

```
8048a25:  cmpl  %edi,%edx
8048a27:  jl     8048a20
8048a29:  movl  0xc(%ebp),%eax
8048a2c:  leal  0xffffffff(%ebp),%esp
8048a2f:  movl  %ecx,(%eax)
```

Supplied by CMU.
Branch Prediction Through Loop

Assume vector length = 100

Predict taken (OK)

Predict taken (oops)

Read invalid location

Executed

Fetched

Supplied by CMU.
Branch Misprediction Invalidation

<table>
<thead>
<tr>
<th>Address</th>
<th>Opcode</th>
<th>Instruction</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>80488b1</td>
<td>movl</td>
<td>(%ecx, %edx, 4), %eax</td>
<td></td>
</tr>
<tr>
<td>80488b4</td>
<td>addl</td>
<td>%eax, (%edi)</td>
<td></td>
</tr>
<tr>
<td>80488b6</td>
<td>incl</td>
<td>%edx</td>
<td></td>
</tr>
<tr>
<td>80488b7</td>
<td>cmpl</td>
<td>%esi, %edx</td>
<td></td>
</tr>
<tr>
<td>80488b9</td>
<td>jl</td>
<td>80488b1</td>
<td></td>
</tr>
</tbody>
</table>

Assume vector length = 100

- Predict taken (OK)
- Predict taken (oops)

<table>
<thead>
<tr>
<th>Address</th>
<th>Opcode</th>
<th>Instruction</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>80488b1</td>
<td>movl</td>
<td>(%ecx, %edx, 4), %eax</td>
<td></td>
</tr>
<tr>
<td>80488b4</td>
<td>addl</td>
<td>%eax, (%edi)</td>
<td></td>
</tr>
<tr>
<td>80488b6</td>
<td>incl</td>
<td>%edx</td>
<td></td>
</tr>
<tr>
<td>80488b7</td>
<td>cmpl</td>
<td>%esi, %edx</td>
<td></td>
</tr>
<tr>
<td>80488b9</td>
<td>jl</td>
<td>80488b1</td>
<td></td>
</tr>
</tbody>
</table>

Invalidate

- Predict taken (OK)
- Predict taken (oops)

Supplied by CMU.
Branch Misprediction Recovery

\begin{verbatim}
80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx
80488b7: cmpl %esi,%edx
80488b9: jl 80488b1
80488bb: leal 0xfffffffff8(%ebp),%esp
80488be: popl %ebx
80488bf: popl %esi
80488c0: popl %edi
\end{verbatim}

\textbf{Performance Cost}

\begin{itemize}
 \item multiple clock cycles on modern processor
 \item can be a major performance limiter
\end{itemize}

\hline
CS33 Intro to Computer Systems

XV-38

Supplied by CMU.
This example is from the textbook. Note that in `minmax1`, a conditional move cannot be used, since the compiler does not know whether `a` and `b` are aliased. In `minmax2`, since both `min` and `max` are computed, the compiler is assured that aliasing doesn't matter.
This example is from the textbook (Figure 5.31). Here we can’t execute the loads in parallel, since each load is dependent on the result of the previous load. The point is that loads (fetching data from memory) have a latency of 4 cycles.
This is adapted from Figure 5.32 of the textbook. Due to dependencies on \(i \), the stores (into \(dest \)) cannot be fully pipelined.
This is adapted from Figure 5.32 of the textbook. By unrolling the loop four times, the stores can be pipelined and thus a store (which takes four cycles to complete) can be started every cycle.
This code is from the textbook.
This is Figure 5.33 of the textbook. Performance depends upon whether src and dest are the same location.
This is Figure 5.34 of the textbook.
This is Figure 5.35 of the textbook.
This is Figure 5.36 of the textbook.
This is adapted from Figure 5.37 of the textbook.
Getting High Performance

• Good compiler and flags
• Don’t do anything stupid
 – watch out for hidden algorithmic inefficiencies
 – write compiler-friendly code
 » watch out for optimization blockers:
 procedure calls & memory references
 – look carefully at innermost loops (where most work is done)

• Tune code for machine
 – exploit instruction-level parallelism
 – avoid unpredictable branches
 – make code cache friendly (covered soon)