CS 33

Data Representation (Part 3)
Byte-Oriented Memory Organization

• Programs refer to data by address
 – conceptually, envision it as a very large array of bytes
 » in reality, it’s not, but can think of it that way
 – an address is like an index into that array
 » pointer variables contain addresses

• Note: system provides private address spaces to each “process”
 – think of a process as a program being executed
 – so, a program can clobber its own data, but not that of others
Machine Words

• Any given computer has a “word size”
 – nominal size of integer-valued data
 » and of addresses
 – until a decade or so ago, most machines used 32 bits (4 bytes) as word size
 » limits addresses to 4GB (2^{32} bytes)
 » became too small for memory-intensive applications
 • leading to emergence of computers with 64-bit word size
 – machines still support multiple data formats
 » fractions or multiples of word size
 » always integral number of bytes
Word-Oriented Memory Organization

- Addresses specify byte locations
 - address of first byte in word
 - addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Byte Ordering

• Four-byte integer
 – 0x76543210

• Stored at location 0x100
 – which byte is at 0x100?
 – which byte is at 0x103?

10 32 54 76
0x100 0x101 0x102 0x103

Little-endian

76 54 32 10
0x100 0x101 0x102 0x103

Big-endian
Byte Ordering (2)

Big Endian

Little Endian

00 00 00 01
Quiz 1

```c
int main() {
    long x=1;
    func((int *)&x);
    return 0;
}

void func(int *arg) {
    printf("%d\n", *arg);
}
```

What value is printed on a big-endian 64-bit computer?

a) 0
b) 1
c) \(2^{32}\)
d) \(2^{32}-1\)
Which Byte Ordering Do We Use?

```c
char title[] = "This is where it begins!!!";
int array[] = {0x04030201, 0x05040302,
               0x06050403, 0x07060504};

int main() {
    for (int i=0; i<4; i++) {
        printf("%x\n", array[i]);
    }
    abort();
    return 0;
}
```
Fractional binary numbers

• What is 1011.101₂?
Fractional Binary Numbers

- Representation
 - bits to right of “binary point” represent fractional powers of 2
 - represents rational number:
 \[\sum_{k=-j}^{i} b_k \times 2^k \]
Representable Numbers

• Limitation #1
 – can exactly represent only numbers of the form $n/2^k$
 » other rational numbers have repeating bit representations
 – value representation
 » 1/3 $0.0101010101[01]..._2$
 » 1/5 $0.001100110011[0011]..._2$
 » 1/10 $0.0001100110011[0011]..._2$

• Limitation #2
 – just one setting of decimal point within the w bits
 » limited range of numbers (very small values? very large?)
IEEE Floating Point

• **IEEE Standard 754**
 – established in 1985 as uniform standard for floating point arithmetic
 » before that, many idiosyncratic formats
 – supported on all major CPUs

• **Driven by numerical concerns**
 – nice standards for rounding, overflow, underflow
 – hard to make fast in hardware
 » numerical analysts predominated over hardware designers in defining standard
Floating-Point Representation

- **Numerical Form:**
 \[(-1)^s \times M \times 2^E \]
 - sign bit \(s \) determines whether number is negative or positive
 - significand \(M \) normally a fractional value in range \([1.0, 2.0)\)
 - exponent \(E \) weights value by power of two

- **Encoding**
 - MSB \(s \) is sign bit \(s \)
 - exp field encodes \(E \) (but is not equal to \(E \))
 - frac field encodes \(M \) (but is not equal to \(M \))

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
</table>
Precision options

- **Single precision: 32 bits**
 - s (sign) 1-bit
 - exp (exponent) 8-bits
 - $frac$ (fraction) 23-bits

- **Double precision: 64 bits**
 - s (sign) 1-bit
 - exp (exponent) 11-bits
 - $frac$ (fraction) 52-bits

- **Extended precision: 80 bits (Intel only)**
 - s (sign) 1-bit
 - exp (exponent) 15-bits
 - $frac$ (fraction) 64-bits
“Normalized” Values

• When: \(\text{exp} \neq 000\ldots0 \) and \(\text{exp} \neq 111\ldots1 \)

• Exponent coded as biased value:
 \[
 E = \text{Exp} - \text{Bias}
 \]
 - \(\text{exp} \): unsigned value \(\text{exp} \)
 - \(\text{bias} = 2^{k-1} - 1 \), where \(k \) is number of exponent bits
 » single precision: \(127\) (\(\text{Exp}: 1\ldots254\), \(E: -126\ldots127\))
 » double precision: \(1023\) (\(\text{Exp}: 1\ldots2046\), \(E: -1022\ldots1023\))

• Significand coded with implied leading 1:
 \[
 M = 1.\text{xxx}\ldots\text{x}_2
 \]
 - \(\text{xxx}\ldots\text{x}\): bits of \(\text{frac}\)
 - minimum when \(\text{frac}=000\ldots0\) (\(M = 1.0\))
 - maximum when \(\text{frac}=111\ldots1\) (\(M = 2.0 - \varepsilon\))
 - get extra leading bit for “free”
Normalized Encoding Example

- **Value:** float \(F = 15213.0; \)
 - \(15213_{10} = 11101101101101_2 \)
 - \(= 1.1101101101101_2 \times 2^{13} \)

- **Significand**
 \[M = 1.1101101101101_2 \]
 \[frac = 11011011011010000000000002 \]

- **Exponent**
 \[E = 13 \]
 \[bias = 127 \]
 \[exp = 140 = 10001100_2 \]

- **Result:**

\[
0 \quad 10001100 \quad 1101101101101000000000000000
\]

\[s \quad exp \quad frac \]
Denormalized Values

- Condition: \(exp = 000...0 \)
- Exponent value: \(E = -\text{Bias} + 1 \) (instead of \(E = 0 - \text{Bias} \))
- Significand coded with implied leading 0:
 \[M = 0.xxx...x_2 \]
 - \(xxx...x \): bits of \(\text{frac} \)
- Cases
 - \(exp = 000...0, \frac{\text{}\text{c}}{\text{r}} = 000...0 \)
 » represents zero value
 » note distinct values: +0 and −0 (why?)
 - \(exp = 000...0, \frac{\text{}\text{c}}{\text{r}} \neq 000...0 \)
 » numbers closest to 0.0
 » equispaced
Special Values

• **Condition**: \(\exp = 111...1 \)

• **Case**: \(\exp = 111...1, \frac{}{\text{frac}} = 000...0 \)
 – represents value \(\infty \) (infinity)
 – operation that overflows
 – both positive and negative
 – e.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, \ 1.0/-0.0 = -\infty \)

• **Case**: \(\exp = 111...1, \frac{}{\text{frac}} \neq 000...0 \)
 – not-a-number (NaN)
 – represents case when no numeric value can be determined
 – e.g., \(\sqrt{-1}, \infty - \infty, \infty \times 0 \)
Visualization: Floating-Point Encodings

-∞ - Normalized - Denorm + Denorm + Normalized +∞

NaN -0 +0 NaN
Tiny Floating-Point Example

- **8-bit Floating Point Representation**
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac

- **Same general form as IEEE Format**
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>

- **Denormalized numbers**: Closest to zero.
- **Normalized numbers**: Smallest norm and closest to 1 below and above, largest norm.
Distribution of Values

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - bias is $2^{3-1} - 1 = 3$

- Notice how the distribution gets denser toward zero.

8 values

- **Denormalized**
- **Normalized**
- **Infinity**
Distribution of Values (close-up view)

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - bias is 3

![Diagram of distribution of values](image)
Quiz 2

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - bias is 3

What number is represented by 0 011 10?

a) 12
b) 1.5
c) .5
d) none of the above
Floating-Point Operations: Basic Idea

• \(x +_f y = \text{Round}(x + y) \)

• \(x \times_f y = \text{Round}(x \times y) \)

• Basic idea
 – first \textit{compute exact result}
 – make it fit into desired precision
 » possibly overflow if exponent too large
 » possibly \textit{round to fit into frac}
Rounding

- **Rounding modes (illustrated with $ rounding)**

<table>
<thead>
<tr>
<th>Rounding Mode</th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>$−1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>−$1</td>
</tr>
<tr>
<td>round down ($−\infty$)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>−$2</td>
</tr>
<tr>
<td>round up ($+\infty$)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>−$1</td>
</tr>
<tr>
<td>nearest integer</td>
<td>$1</td>
<td>$2</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>nearest even (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>−$2</td>
</tr>
</tbody>
</table>
Creating a Floating Point Number

• **Steps**
 – normalize to have leading 1
 – round to fit within fraction
 – postnormalize to deal with effects of rounding

• **Case study**
 – convert 8-bit unsigned numbers to tiny floating-point format

<table>
<thead>
<tr>
<th>Example Numbers</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
</tr>
<tr>
<td>13</td>
<td>00001101</td>
</tr>
<tr>
<td>33</td>
<td>00010001</td>
</tr>
<tr>
<td>35</td>
<td>00010011</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
</tr>
</tbody>
</table>
Normalize

Requirement
- set binary point so that numbers of form 1.xxxxx
- adjust all to have leading one
 » decrement exponent as shift left

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Fraction</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
<td>1.00000000</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>00001101</td>
<td>1.10100000</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
<td>1.00010000</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
<td>1.00110000</td>
<td>4</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
<td>1.0001010</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
<td>1.1111100</td>
<td>5</td>
</tr>
</tbody>
</table>
Rounding

1. BBGRXXX

Guard bit: LSB of result
Sticky bit: OR of remaining bits
Round bit: 1st bit removed

• Round-up conditions
 – round = 1, sticky = 1 ⇒ > 0.5
 – guard = 1, round = 1, sticky = 0 ⇒ round up to even

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction</th>
<th>GRS</th>
<th>Incr?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.0000000</td>
<td>000</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>13</td>
<td>1.1010000</td>
<td>100</td>
<td>N</td>
<td>1.101</td>
</tr>
<tr>
<td>17</td>
<td>1.0001000</td>
<td>010</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.0011000</td>
<td>110</td>
<td>Y</td>
<td>1.010</td>
</tr>
<tr>
<td>138</td>
<td>1.0001010</td>
<td>011</td>
<td>Y</td>
<td>1.001</td>
</tr>
<tr>
<td>63</td>
<td>1.1111100</td>
<td>111</td>
<td>Y</td>
<td>10.000</td>
</tr>
</tbody>
</table>
Postnormalize

• Issue
 – rounding may have caused overflow
 – handle by shifting right once & incrementing exponent

<table>
<thead>
<tr>
<th>Value</th>
<th>Rounded</th>
<th>Exp</th>
<th>Adjusted</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.000</td>
<td>7</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.101</td>
<td>3</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.010</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>1.001</td>
<td>7</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>10.000</td>
<td>5</td>
<td>1.000*2^6</td>
<td>64</td>
</tr>
</tbody>
</table>
Floating-Point Multiplication

- \((-1)^{s_1} M_1 \ 2^{E_1} \times (-1)^{s_2} M_2 \ 2^{E_2}\)
- Exact result: \((-1)^s M \ 2^E\)
 - sign s: \(s_1 \wedge s_2\)
 - significand M: \(M_1 \times M_2\)
 - exponent E: \(E_1 + E_2\)

- Fixing
 - if \(M \geq 2\), shift \(M\) right, increment \(E\)
 - if \(E\) out of range, overflow (or underflow)
 - round \(M\) to fit \(\text{frac}\) precision

- Implementation
 - biggest chore is multiplying significands
Floating-Point Addition

• \((-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2}\)
 – assume \(E_1 > E_2\)

• Exact result: \((-1)^{s} M \ 2^{E}\)
 – sign \(s\), significand \(M\):
 » result of signed align & add
 – exponent \(E\): \(E_1\)

• Fixing
 – if \(M \geq 2\), shift \(M\) right, increment \(E\)
 – if \(M < 1\), shift \(M\) left \(k\) positions, decrement \(E\) by \(k\)
 – overflow if \(E\) out of range
 – round \(M\) to fit frac precision