CS 33

Data Representation (Part 2)
Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned by power of 2
 - $u \gg k$ gives $\lfloor u / 2^k \rfloor$
 - uses logical shift

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$x \gg 1$</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>$x \gg 4$</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>$x \gg 8$</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

- Quotient of signed by power of 2
 - \(x \gg k \) gives \(\lfloor x / 2^k \rfloor \)
 - uses arithmetic shift
 - rounds wrong direction when \(x < 0 \)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y \gg 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y \gg 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>(y \gg 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- Quotient of negative number by power of 2
 - want $\left\lfloor \frac{x}{2^k} \right\rfloor$ (round toward 0)
 - compute as $\left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor$
 » in C: $(x + (1<<k) - 1) >> k$
 » biases dividend toward 0

Case 1: no rounding

<table>
<thead>
<tr>
<th>dividend:</th>
<th>divisor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>2^k</td>
</tr>
<tr>
<td>$u / 2^k$</td>
<td>$\left\lfloor \frac{x}{2^k} \right\rfloor$</td>
</tr>
</tbody>
</table>

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: rounding

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>(x \times 2^k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+2^k - 1)</td>
<td>(0 \cdots 001 \cdots 11)</td>
</tr>
</tbody>
</table>

\[\frac{x}{2^k} \]

<table>
<thead>
<tr>
<th>Divisor:</th>
<th>(\frac{x}{2^k})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left\lfloor \frac{x}{2^k} \right\rfloor)</td>
<td>(1 \cdots 111 \cdots)</td>
</tr>
</tbody>
</table>

Biases adds 1 to final result
Why Should I Use Unsigned?

• Don’t use just because number nonnegative
 – easy to make mistakes

 unsigned i;
 for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];
 – can be very subtle

 #define DELTA sizeof(int)
 int i;
 for (i = CNT; i-DELTA >= 0; i-= DELTA)
 ...

• Do use when using bits to represent sets
 – logical right shift, no sign extension
Combining Bytes

• Data items of multiple sizes, usually powers of two
 – one-byte, two-byte, four-byte, eight-byte integers
 – four-byte and eight-byte floating-point numbers
• For example: four consecutive bytes interpreted as storing an integer (or a float)
 – for best performance, address of lowest byte should be a multiple of the size of the item (four in this case)
Word Size

• (Mostly) obsolete term
 – old computers had items of one size: the word size

• Now used to express the number of bits necessary to hold an address
 – 16 bits (really old computers)
 – 32 bits (old computers)
 – 64 bits (most current computers)
Byte Ordering

- Four-byte integer
 - 0x76543210
- Stored at location 0x100
 - which byte is at 0x100?
 - which byte is at 0x103?

<table>
<thead>
<tr>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>32</td>
<td>54</td>
<td>76</td>
</tr>
<tr>
<td>76</td>
<td>54</td>
<td>32</td>
<td>10</td>
</tr>
</tbody>
</table>

Little-endian

Big-endian
Byte Ordering (2)

Big Endian

Little Endian

00 00 00 01
Quiz 1

```c
int main() {
    long x=1;
    func((int *)&x);
    return 0;
}

void func(int *arg) {
    printf("%d\n", *arg);
}
```

What value is printed on a big-endian 64-bit computer?

- a) 0
- b) 1
- c) 2^{32}
- d) $2^{32}-1$
Which Byte Ordering Do We Use?

```c
int main() {
    unsigned int x = 0x03020100;
    unsigned char *xarray = (unsigned char *)&x;
    for (int i=0; i<4; i++) {
        printf("%02x", xarray[i]);
    }
    printf("\n");
    return 0;
}
```
Fractional binary numbers

• What is 1011.101_2?
Fractional Binary Numbers

- Representation
 - bits to right of “binary point” represent fractional powers of 2
 - represents rational number: \[\sum_{k=-j}^{i} b_k \times 2^k \]
Representable Numbers

• **Limitation #1**
 – can exactly represent only numbers of the form \(n/2^k \)
 » other rational numbers have repeating bit representations
 – value representation
 » 1/3 \(0.0101010101[01]..._2 \)
 » 1/5 \(0.001100110011[0011]..._2 \)
 » 1/10 \(0.0001100110011[0011]..._2 \)

• **Limitation #2**
 – just one setting of decimal point within the \(w \) bits
 » limited range of numbers (very small values? very large?)
IEEE Floating Point

• IEEE Standard 754
 – established in 1985 as uniform standard for floating point arithmetic
 » before that, many idiosyncratic formats
 – supported on all major CPUs

• Driven by numerical concerns
 – nice standards for rounding, overflow, underflow
 – hard to make fast in hardware
 » numerical analysts predominated over hardware designers in defining standard
Floating-Point Representation

- Numerical Form:
 \[(-1)^s \ M \ 2^E \]
 - sign bit \(s \) determines whether number is negative or positive
 - significand \(M \) normally a fractional value in range \([1.0,2.0)\)
 - exponent \(E \) weights value by power of two

- Encoding
 - MSB \(s \) is sign bit \(s \)
 - exp field encodes \(E \) (but is not equal to \(E \))
 - frac field encodes \(M \) (but is not equal to \(M \))
Precision options

- **Single precision: 32 bits**

 \[
 \begin{array}{ccc}
 s & \text{exp} & \text{frac} \\
 1 & 8\text{-bits} & 23\text{-bits}
 \end{array}
 \]

- **Double precision: 64 bits**

 \[
 \begin{array}{ccc}
 s & \text{exp} & \text{frac} \\
 1 & 11\text{-bits} & 52\text{-bits}
 \end{array}
 \]

- **Extended precision: 80 bits (Intel only)**

 \[
 \begin{array}{ccc}
 s & \text{exp} & \text{frac} \\
 1 & 15\text{-bits} & 64\text{-bits}
 \end{array}
 \]
“Normalized” Values

• When: \(\exp \neq 000\ldots0 \) and \(\exp \neq 111\ldots1 \)

• Exponent coded as biased value: \(E = \Exp - \Bias \)
 – \(\exp \): unsigned value \(\exp \)
 – \(\bias = 2^{k-1} - 1 \), where \(k \) is number of exponent bits
 » single precision: 127 (Exp: 1…254, E: -126…127)
 » double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: \(M = 1.\,\text{xxx…x} \)
 – \(\text{xxx…x} \): bits of \(\text{frac} \)
 – minimum when \(\text{frac}=000\ldots0 \) (\(M = 1.0 \))
 – maximum when \(\text{frac}=111\ldots1 \) (\(M = 2.0 - \varepsilon \))
 – get extra leading bit for “free”
Normalized Encoding Example

• **Value:** float \(F = 15213.0; \)
 - \(15213_{10} = 11101101101101_2 \)
 - \(= 1.1101101101101_2 \times 2^{13} \)

• **Significand**
 \[
 M = 1.1101101101101_2 \\
 frac = 1101101101010000000000000_2
 \]

• **Exponent**
 \[
 E = 13 \\
 bias = 127 \\
 exp = 140 = 10001100_2
 \]

• **Result:**

\[
\begin{array}{cccc}
\text{s} & \text{exp} & \text{frac} \\
0 & 10001100 & 1101101101101000000000000000
\end{array}
\]
Denormalized Values

• Condition: \(\text{exp} = 000\ldots0 \)
• Exponent value: \(E = -\text{Bias} + 1 \) (instead of \(E = 0 - \text{Bias} \))
• Significand coded with implied leading 0:
 \(M = 0.xxx\ldots x_2 \)
 – \(xxx\ldots x \): bits of \(\text{frac} \)
• Cases
 – \(\text{exp} = 000\ldots0, \text{frac} = 000\ldots0 \)
 » represents zero value
 » note distinct values: +0 and −0 (why?)
 – \(\text{exp} = 000\ldots0, \text{frac} \neq 000\ldots0 \)
 » numbers closest to 0.0
 » equispaced
Special Values

• Condition: $\exp = 111\ldots1$

• Case: $\exp = 111\ldots1$, $\frac{\text{a}}{\text{b}} = 000\ldots0$
 – represents value ∞ (infinity)
 – operation that overflows
 – both positive and negative
 – e.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

• Case: $\exp = 111\ldots1$, $\frac{\text{a}}{\text{b}} \neq 000\ldots0$
 – not-a-number (NaN)
 – represents case when no numeric value can be determined
 – e.g., $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$
Visualization: Floating-Point Encodings

\[\begin{align*}
-\infty & \quad -\text{Normalized} & \quad -\text{Denorm} & \quad +\text{Denorm} & \quad +\text{Normalized} & \quad +\infty \\
\text{NaN} & \quad -0 & \quad +0 & \text{NaN}
\end{align*} \]
Tiny Floating-Point Example

- **8-bit Floating Point Representation**
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac

- **Same general form as IEEE Format**
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>closest to zero</td>
</tr>
<tr>
<td>0</td>
<td>0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td>largest denorm</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td>smallest norm</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td>closest to 1 below</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0110 111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td>closest to 1 above</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
<td>largest norm</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Denormalized numbers

Normalized numbers
Distribution of Values

- **6-bit IEEE-like format**
 - \(e = 3 \) exponent bits
 - \(f = 2 \) fraction bits
 - bias is \(2^{3-1}-1 = 3 \)

- Notice how the distribution gets denser toward zero.

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-bits</td>
<td>2-bits</td>
</tr>
</tbody>
</table>

- Denormalized
- Normalized
- Infinity
Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - bias is 3

![Diagram showing the distribution of values with denormalized, normalized, and infinity markers.](image-url)
Quiz 2

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - bias is 3

What number is represented by 0 011 10?

- a) 12
- b) 1.5
- c) .5
- d) none of the above
Floating-Point Operations: Basic Idea

• $x +_f y = \text{Round}(x + y)$

• $x \times_f y = \text{Round}(x \times y)$

• Basic idea
 – first compute exact result
 – make it fit into desired precision
 » possibly overflow if exponent too large
 » possibly round to fit into frac
Rounding

- **Rounding modes (illustrated with $ rounding)**

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>$–1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$–1</td>
</tr>
<tr>
<td>round down (−∞)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$–2</td>
</tr>
<tr>
<td>round up (+∞)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>$–1</td>
</tr>
<tr>
<td>nearest integer</td>
<td>$1</td>
<td>$2</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>nearest even (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$–2</td>
</tr>
</tbody>
</table>
Creating a Floating Point Number

• **Steps**
 – normalize to have leading 1
 – round to fit within fraction
 – postnormalize to deal with effects of rounding

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-bits</td>
<td>3-bits</td>
</tr>
</tbody>
</table>

• **Case study**
 – convert 8-bit unsigned numbers to tiny floating-point format

example numbers

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
</tr>
<tr>
<td>13</td>
<td>00001101</td>
</tr>
<tr>
<td>33</td>
<td>00010001</td>
</tr>
<tr>
<td>35</td>
<td>00010011</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
</tr>
</tbody>
</table>
Normalize

- **Requirement**
 - set binary point so that numbers of form 1.xxxxx
 - adjust all to have leading one
 » decrement exponent as shift left

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Fraction</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
<td>1.00000000</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>00001101</td>
<td>1.10100000</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
<td>1.00010000</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
<td>1.00110000</td>
<td>4</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
<td>1.00010010</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
<td>1.11111000</td>
<td>5</td>
</tr>
</tbody>
</table>
Rounding

1. BBGRXXX

Guard bit: LSB of result
Sticky bit: OR of remaining bits
Round bit: 1st bit removed

• Round-up conditions
 – round = 1, sticky = 1 ⇒ > 0.5
 – guard = 1, round = 1, sticky = 0 ⇒ round up to even

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction</th>
<th>GRS</th>
<th>Incr?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.00000000</td>
<td>000</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>13</td>
<td>1.10100000</td>
<td>100</td>
<td>N</td>
<td>1.101</td>
</tr>
<tr>
<td>17</td>
<td>1.00010000</td>
<td>010</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.00110000</td>
<td>110</td>
<td>Y</td>
<td>1.010</td>
</tr>
<tr>
<td>138</td>
<td>1.00010100</td>
<td>011</td>
<td>Y</td>
<td>1.001</td>
</tr>
<tr>
<td>63</td>
<td>1.11111000</td>
<td>111</td>
<td>Y</td>
<td>10.000</td>
</tr>
</tbody>
</table>
Postnormalize

- **Issue**
 - rounding may have caused overflow
 - handle by shifting right once & incrementing exponent

<table>
<thead>
<tr>
<th>Value</th>
<th>Rounded</th>
<th>Exp</th>
<th>Adjusted</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.000</td>
<td>7</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.101</td>
<td>3</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.010</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>1.001</td>
<td>7</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>10.000</td>
<td>5</td>
<td>1.000*2^6</td>
<td>64</td>
</tr>
</tbody>
</table>
Floating-Point Multiplication

• \((-1)^{s_1} M_1 2^{E_1} \times (-1)^{s_2} M_2 2^{E_2}\)

• Exact result: \((-1)^s M 2^E\)
 – sign s: \(s_1 \land s_2\)
 – significand M: \(M_1 \times M_2\)
 – exponent E: \(E_1 + E_2\)

• Fixing
 – if \(M \geq 2\), shift M right, increment E
 – if E out of range, overflow (or underflow)
 – round M to fit \(\frac{\text{precision}}{\text{frac}}\)

• Implementation
 – biggest chore is multiplying significands
Floating-Point Addition

• $(-1)^{s_1} M_1 \ 2^{E_1} \ + \ (-1)^{s_2} M_2 \ 2^{E_2}$
 – assume $E_1 > E_2$

• **Exact result:** $(-1)^s \ M \ 2^E$
 – sign s, significand M:
 » result of signed align & add
 – exponent E: E_1

• **Fixing**
 – if $M \geq 2$, shift M right, increment E
 – if $M < 1$, shift M left k positions, decrement E by k
 – overflow if E out of range
 – round M to fit frac precision