CS 33

Data Representation (Part 2)
Fractional binary numbers

• What is 1011.101_2?
Fractional Binary Numbers

- Representation
 - bits to right of “binary point” represent fractional powers of 2
 - represents rational number:
 \[\sum_{k=-j}^{i} b_k \times 2^k \]
Representable Numbers

• Limitation #1
 – can exactly represent only numbers of the form \(n/2^k \)
 » other rational numbers have repeating bit representations
 – value representation
 » 1/3 \(0.0101010101[01]\ldots_2 \)
 » 1/5 \(0.001100110011[0011]\ldots_2 \)
 » 1/10 \(0.0001100110011[0011]\ldots_2 \)

• Limitation #2
 – just one setting of decimal point within the \(w \) bits
 » limited range of numbers (very small values? very large?)
IEEE Floating Point

• IEEE Standard 754
 – established in 1985 as uniform standard for floating point arithmetic
 » before that, many idiosyncratic formats
 – supported by all major CPUs

• Driven by numerical concerns
 – nice standards for rounding, overflow, underflow
 – hard to make fast in hardware
 » numerical analysts predominated over hardware designers in defining standard
Floating-Point Representation

• Numerical Form:
 $(-1)^s \times M \times 2^E$
 - sign bit s determines whether number is negative or positive
 - significand M normally a fractional value in range $[1.0,2.0)$
 - exponent E weights value by power of two
• Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)
Precision options

• **Single precision: 32 bits**

 1 8-bits 23-bits

• **Double precision: 64 bits**

 1 11-bits 52-bits

• **Extended precision: 80 bits (Intel only)**

 1 15-bits 64-bits
“Normalized” Values

• When: $\exp \neq 000\ldots0$ and $\exp \neq 111\ldots1$

• Exponent coded as biased value: $E = \Exp - \Bias$
 – \exp: unsigned value \exp
 – $\bias = 2^{k-1} - 1$, where k is number of exponent bits
 » single precision: 127 ($\Exp: 1\ldots254$, $E: -126\ldots127$)
 » double precision: 1023 ($\Exp: 1\ldots2046$, $E: -1022\ldots1023$)

• Significand coded with implied leading 1: $M = 1.\xxx\ldots\x_2$
 – $\xxx\ldots\x$: bits of $\frac{\text{frac}}{2}$
 – minimum when $\frac{\text{frac}}{2}=000\ldots0$ ($M = 1.0$)
 – maximum when $\frac{\text{frac}}{2}=111\ldots1$ ($M = 2.0 - \varepsilon$)
 – get extra leading bit for “free”
Normalized Encoding Example

• **Value:**
 \[\text{float } F = 15213.0; \]

 \[15213_{10} = 11101101101101_2 \]

 \[= 1.1101101101101_2 \times 2^{13} \]

• **Significand**

 \[M = 1.1101101101101_2 \]

 \[\frac{\text{frac}}{00000000} = 1101101101101000000000000_2 \]

• **Exponent**

 \[E = 13 \]

 \[bias = 127 \]

 \[exp = 140 = 10001100_2 \]

• **Result:**

 \[0 \quad 10001100 \quad 11011011011011010000000000000000 \]

 \[s \quad \text{exp} \quad \text{frac} \]
Denormalized Values

• Condition: \(\text{exp} = 000\ldots0 \)
• Exponent value: \(E = -\text{Bias} + 1 \) (instead of \(E = 0 - \text{Bias} \))
• Significand coded with implied leading 0:
 \(M = 0.xxx\ldots x_2 \)
 - \(xxx\ldots x \): bits of \(\text{frac} \)
• Cases
 - \(\text{exp} = 000\ldots0, \text{frac} = 000\ldots0 \)
 » represents zero value
 » note distinct values: +0 and –0 (why?)
 - \(\text{exp} = 000\ldots0, \text{frac} \neq 000\ldots0 \)
 » numbers closest to 0.0
 » equispaced
Special Values

• **Condition:** $\exp = 111...1$

• **Case:** $\exp = 111...1$, $\frac{\text{c}}{\text{frac}} = 000...0$

 – represents value ∞ (infinity)

 – operation that overflows

 – both positive and negative

 – e.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

• **Case:** $\exp = 111...1$, $\frac{\text{c}}{\text{frac}} \neq 000...0$

 – not-a-number (NaN)

 – represents case when no numeric value can be determined

 – e.g., $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$
Visualization: Floating-Point Encodings

-∞ -Normalized -Denorm +Denorm +Normalized +∞

NaN

-0 +0

NaN
Tiny Floating-Point Example

8-bit Floating Point Representation
- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the $frac$

Same general form as IEEE Format
- normalized, denormalized
- representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td></td>
</tr>
<tr>
<td>0 0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
</tr>
</tbody>
</table>

Denormalized numbers

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td></td>
</tr>
<tr>
<td>0 0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
</tbody>
</table>

Normalized numbers

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td></td>
</tr>
<tr>
<td>0 0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td></td>
</tr>
<tr>
<td>0 0111 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td></td>
</tr>
<tr>
<td>0 0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
<td></td>
</tr>
<tr>
<td>0 1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1111 000</td>
<td>n/a</td>
<td>inf</td>
<td>inf</td>
</tr>
</tbody>
</table>
Distribution of Values

- 6-bit IEEE-like format
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - bias is $2^{3-1} - 1 = 3$

- Notice how the distribution gets denser toward zero.

Denormalized \(\downarrow\) Normalized \(\uparrow\) Infinity

0 3-bits 2-bits

1 3-values
Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - bias is 3

-1 -0.5 0 0.5 1

- Denormalized - Normalized - Infinity
Quiz 1

• 6-bit IEEE-like format
 – e = 3 exponent bits
 – f = 2 fraction bits
 – bias is 3

What number is represented by 0 011 10?

a) 12
b) 1.5
c) .5
d) none of the above
Floating-Point Operations: Basic Idea

- \(x +_f y = \text{Round}(x + y) \)

- \(x \times_f y = \text{Round}(x \times y) \)

- Basic idea
 - first **compute exact result**
 - make it fit into desired precision
 - possibly **overflow** if exponent too large
 - possibly **round to fit into frac**
Rounding

- Rounding modes (illustrated with $ rounding)

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>−$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>−$1</td>
</tr>
<tr>
<td>round down (−∞)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>−$2</td>
</tr>
<tr>
<td>round up (+∞)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>−$1</td>
</tr>
<tr>
<td>nearest even (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>−$2</td>
</tr>
</tbody>
</table>
Closer Look at Round-To-Nearest-Even

• Default rounding mode
 – hard to get any other kind without dropping into assembly
 – all others are statistically biased
 » sum of set of positive numbers will consistently be over- or under-estimated

• Applying to other decimal places / bit positions
 – when exactly halfway between two possible values
 » round so that least significant digit is even
 – e.g., round to nearest hundredth

 | 1.2349999 | 1.23 | (less than half way) |
 | 1.2350001 | 1.24 | (greater than half way) |
 | 1.2350000 | 1.24 | (half way—round up) |
 | 1.2450000 | 1.24 | (half way—round down) |
Rounding Binary Numbers

• Binary fractional numbers
 – “even” when least significant bit is 0
 – “half way” when bits to right of rounding position = 100…

• Examples
 – round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Floating-Point Multiplication

- \((-1)^{s_1} M_1 \times 2^{E_1} \times (-1)^{s_2} M_2 \times 2^{E_2}\)
- Exact result: \((-1)^s M \times 2^E\)
 - sign s: \(s_1 \oplus s_2\)
 - significand M: \(M_1 \times M_2\)
 - exponent E: \(E_1 + E_2\)

Fixing
- if \(M \geq 2\), shift M right, increment E
- if E out of range, overflow (or underflow)
- round M to fit \(\frac{\text{precision}}{\text{Frac}}\) precision

Implementation
- biggest chore is multiplying significands
Floating-Point Addition

- \((–1)^{s1} M_1 \ 2^{E_1} + (–1)^{s2} M_2 \ 2^{E_2}\)
 - assume \(E_1 > E_2\)

- Exact result: \((–1)^s M \ 2^E\)
 - sign \(s\), significand \(M\):
 » result of signed align & add
 - exponent \(E\): \(E_1\)

- Fixing
 - if \(M \geq 2\), shift \(M\) right, increment \(E\)
 - if \(M < 1\), shift \(M\) left \(k\) positions, decrement \(E\) by \(k\)
 - overflow if \(E\) out of range
 - round \(M\) to fit \(fract\) precision
Floating Point in C

• C guarantees two levels
 – float single precision
 – double double precision

• Conversions/casting
 – casting between int, float, and double changes bit representation
 – double/float → int
 » truncates fractional part
 » like rounding toward zero
 » not defined when out of range or NaN: generally sets to Tmin
 – int → double
 » exact conversion, as long as int has ≤ 53-bit word size
 – int → float
 » will round according to rounding mode
Creating Floating-Point Numbers

• **Steps**
 – normalize to have leading 1
 – round to fit within fraction
 – postnormalize to deal with effects of rounding

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>1</td>
<td>4-bits</td>
</tr>
</tbody>
</table>

• **Case study**
 – convert 8-bit unsigned numbers to tiny floating point format

<table>
<thead>
<tr>
<th>Example Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>138</td>
</tr>
<tr>
<td>63</td>
</tr>
</tbody>
</table>

128 10000000
13 00001101
33 00010001
35 00010011
138 10001010
63 00111111
Normalize

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Fraction</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
<td>1.00000000</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>00001101</td>
<td>1.10100000</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
<td>1.00010000</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
<td>1.00110000</td>
<td>4</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
<td>1.00010100</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
<td>1.11111100</td>
<td>5</td>
</tr>
</tbody>
</table>

- **Requirement**
 - set binary point so that numbers of form 1.xxxxx
 - adjust all to have leading one
 - decrement exponent as shift left
Rounding

1. BBG RXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round-up conditions

- round = 1, sticky = 1 ⇒ > 0.5
- guard = 1, round = 1, sticky = 0 ⇒ round to even

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction</th>
<th>GRS</th>
<th>Incr?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.0000000</td>
<td>000</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>13</td>
<td>1.1010000</td>
<td>100</td>
<td>N</td>
<td>1.101</td>
</tr>
<tr>
<td>17</td>
<td>1.0001000</td>
<td>010</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.0011000</td>
<td>110</td>
<td>Y</td>
<td>1.010</td>
</tr>
<tr>
<td>138</td>
<td>1.0001010</td>
<td>011</td>
<td>Y</td>
<td>1.001</td>
</tr>
<tr>
<td>63</td>
<td>1.1111100</td>
<td>111</td>
<td>Y</td>
<td>10.000</td>
</tr>
</tbody>
</table>
Postnormalize

• Issue
 – rounding may have caused overflow
 – handle by shifting right once & incrementing exponent

<table>
<thead>
<tr>
<th>Value</th>
<th>Rounded</th>
<th>Exp</th>
<th>Adjusted</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.000</td>
<td>7</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>13</td>
<td>1.101</td>
<td>3</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
<td>4</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>1.010</td>
<td>4</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>138</td>
<td>1.001</td>
<td>7</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>63</td>
<td>10.000</td>
<td>5</td>
<td>1.000*2^6</td>
<td>64</td>
</tr>
</tbody>
</table>
Suppose f, declared to be a `float`, is assigned the largest possible floating-point positive value (other than $+\infty$). What is the value of $g = f+1.0$?

a) f
b) $+\infty$
c) NAN
d) 0
Float is not Rational …

• Floating addition
 – commutative: \(a +^f b = b +^f a \)
 » yes!
 – associative: \(a +^f (b +^f c) = (a +^f b) +^f c \)
 » no!
 • \(2 +^f (1e10 +^f -1e10) = 2 \)
 • \((2 +^f 1e10) +^f -1e10 = 0 \)
Float is not Rational …

• Multiplication
 – commutative: \(a \times_f b = b \times_f a\)
 » yes!
 – associative: \(a \times_f (b \times_f c) = (a \times_f b) \times_f c\)
 » no!
 • \(1 \times_e 20 \times_f (1 \times_e 20 \times_f 1 \times_e -20) = 1 \times_e 20\)
 • \((1 \times_e 20 \times_f 1 \times_e 20) \times_f 1 \times_e -20 = +\infty\)
Float is not Rational …

• More …
 – multiplication distributes over addition:
 $$a \times_f (b +_f c) = (a \times_f b) +_f (a \times_f c)$$
 » no!
 » $1e20 \times_f (1e20 +_f -1e20) = 0$
 » $(1e20 \times_f 1e20) +_f (1e20 \times_f -1e20) = \text{NaN}$
 – loss of significance:
 $$x=y+1$$
 $$z=2/(x-y)$$
 $$z==2?$$
 » not necessarily!
 • consider $y = 1e20$