Logical Equivalences

Given booleans p, q, and r, the following logical equivalences hold:

1. **Commutative Laws:**

 \[
 p \& q == q \& p \\
 p \mid q == q \mid p
 \]

2. **Associative Laws:**

 \[
 (p \& q) \& r == p \& (q \& r) \\
 (p \mid q) \mid r == p \mid (q \mid r)
 \]

3. **Distributive Laws:**

 \[
 p \& (q \mid r) == (p \& q) \mid (p \& r) \\
 p \mid (q \& r) == (p \mid q) \& (p \mid r)
 \]

4. **Identity Laws:**

 \[
 p \& -1 == p \\
 p \mid 0 == p
 \]

5. **Negation Laws:**

 \[
 p \& (~p) == 0 \\
 p \mid (~p) == -1
 \]
6 Double Negate Law:

\[\sim(\sim p) = p \]

7 Idempotent Laws:

\[p \& p = p \]

\[p \lor p = p \]

8 Universal Bound Laws:

\[p \& 0 = 0 \]

\[p \lor -1 = -1 \]

9 De Morgan’s Laws:

\[\sim(p \& q) = \sim p \lor \sim q \]

\[\sim(p \lor q) = \sim p \& \sim q \]

10 Absorption Laws:

\[p \lor (p \& q) = p \]

\[p \& (p \lor q) = p \]

11 Logical Negation of 0 and not 0:

\[!<\text{non-zero}> = 0 \]

\[!0 = 1 \]