
CS031

CS31
 Pascal Van Hentenryck

Lecture 16 1

aka MIPS Procedures

CS031 Lecture 16 2

MIPS Procedures

Functions in C, C++
Methods in Java

•  A method is just a function with
the receiver object as the first
arguments

Outline
•  Branching and return
•  Passing arguments
•  Saving registers

CS031 Lecture 16 3

Procedures

Procedure without arguments
•  Where to jump?
•  Where to go back?

__start: move $s0,$s1

 ...

 {call procedure gumbo}

 mul $s2,$s5,$s7

 ...

 done

gumbo: add $s3,$s4,$s5

 ...

 {go back to where we came from}

CS031 Lecture 16 4

The Kick

How do I go back now?

CS031 Lecture 16 5

Jumping and Kicking

MAL helps us quite a bit
 jal label

•  puts the address of the next instruction
into register $ra (return address)

•  branches to label

This is easy to do in hardware since
the PC contains the right address (or
almost)

CS031 Lecture 16 6

Example Procedure

__start: li $s0,7

 jal verse1

 jal refrain

 jal verse2

 jal refrain

 done

verse1: ...

 ...

 jr $ra

refrain: ...

 ...

 jr $ra

Could we do without jal?

CS031 Lecture 16 7

Example Procedure

start: li $s0,7
 jal verse1
 jal refrain
 jal verse2
 jal refrain
 done

verse1: ...
 jal subverse1
 li $s0,33
 jr $ra

refrain: ...
 ...
 jr $ra

•  What if verse1 does a jal?
•  What if it uses $s0?

CS031 Lecture 16 8

Example Procedure

start: li $s0,7
 jal verse1
 jal refrain
 jal verse2
 jal refrain
 done

verse1: ...
 jal subverse1
 li $s0,33
 jr $ra

• What if verse1 does a jal?

• What if it uses $s0?

CS031 Lecture 16 9

Example Procedure

CS031 Lecture 16 10

The System Stack

(A Necessary Digression)

Sometimes we have to save data into
memory:

•  return addresses for nested procedures
•  register values if more than one procedure

wants to use the same register

It’s inconvenient to have to anticipate
exactly how much such storage we’ll need
and allocate memory to it explicitly.

Instead, we’ll construct another way to
allocate memory locations: the system
stack.

CS031 Lecture 16 11

b

Stacks in the Abstract

Stacks have two operations:
•  push(item): add item to the top of the stack
•  pop: remove the item from the top of the stack

 push a
 push b
 push c
 pop =>
 pop =>
 push d
 push e
 pop =>
 pop =>
 pop =>

e

d

a

c

CS031 Lecture 16 12

MIPS Stack
•  the MIPS system stack is in memory

(the same memory as your program
and data)

•  register $sp contains the stack pointer
•  the stack grows in the direction of

smaller addresses
•  the stack pointer always contains the

address of the next free location

CS031 Lecture 16 13

$sp

33209872
12345678

$sp

33209872

Pushing

To push a word onto the stack:
 sub $sp,$sp,4
 li $s0,0x12345678
 sw $s0,4($sp)

Before:

After:

CS031 Lecture 16 14

$sp

12345678

12121212
34343434

FAFAFAFA

$sp

12345678

12121212
34343434

FAFAFAFA

Popping
To pop a word off the stack:

 lw $s0,4($sp)
 add $sp,$sp,4

Before:

After:

CS031 Lecture 16 15

Saving Return Addresses

At the beginning of every procedure, push the return
address on the stack. Then pop it at the end.

start:
 jal mumbo
 ...
 done

mumbo:
 sub $sp,$sp,4 # push ra
 sw $ra,4($sp)

 ...
 jal jumbo
 ...
 lw $ra,4($sp) # pop ra
 add $sp,$sp,4
 jr $ra

Always do this!!

CS031 Lecture 16 16

Example Procedure

CS031 Lecture 16 17

What is her name?

CS031 Lecture 16 18

S and T Registers

__start:
 lw $t0,important_value
 jal mumbo
 add $t0,$t0,1
 ...
 done

CS031 Lecture 16 19

S and T Registers

There are two sets of general-purpose registers:
 Saved registers: $s0-$s8
 Temporary registers: $t0-$t9

Saved registers must be preserved across procedure
calls, so if you use one in a procedure, you must
restore its old value when you’re done.

Temporary registers may not be preserved across
procedure calls.

What’s wrong with this picture?

__start:
 lw $t0,important_value
 jal mumbo
 add $t0,$t0,1
 ...
 done

CS031 Lecture 16 20

Saving Registers
At the beginning of a procedure (after saving the return
address) save any s registers you are going to use.
Restore them at the end.

 # s1 will hold the GNP
 # s2 will hold the avg. grease ratio
 # t0 is used for calculation

jumbo:
 sub $sp,$sp,4 # push ra
 sw $ra,4($sp)
 sub $sp,$sp,4 # save $s1
 sw $s1,4($sp)
 sub $sp,$sp,4 # save $s2
 sw $s2,4($sp)
 ... # do work
 lw $s2,4($sp) # restore $s2
 add $sp,$sp,4
 lw $s1,4($sp) # restore $s1
 add $sp,$sp,4
 lw $ra,4($sp) # pop ra
 add $sp,$sp,4
 jr $ra

Nobody said assembly language wasn’t tedious.

CS031 Lecture 16 21

Saving Registers More
Efficiently

We can make the previous example more efficient:

 # s1: GNP
 # s2: avg. grease ratio
 # t0: used for calculation

jumbo:
 sub $sp,$sp,12
 sw $ra,12($sp) # push ra
 sw $s1,8($sp) # save s1
 sw $s2,4($sp) # save s2
 ...
 lw $s2,4($sp) # restore $s2
 lw $s1,8($sp) # restore $s1
 lw $ra,12($sp) # pop ra
 add $sp,$sp,12
 jr $ra

CS031 Lecture 16 22

How to move data?

CS031 Lecture 16 23

Passing Arguments: The
Easy Way

Registers $a0-$a3 are reserved for passing
arguments. They are not preserved across
procedure calls.

Registers $v0-$v1 are for returning results.

 # a0: one of the nums to be averaged

 # a1: another num to be averaged
 # v0: return the result

 # t0: calculation

average:

 add $t0,$a0,$a1
 div $v0,$t0,2

 jr $ra

What if we need to call another procedure?

CS031 Lecture 16 24

Passing Arguments: The
General Way

In nested procedures, we may have to save
argument values on the stack.

Sometimes, we’ll have too many arguments
to fit into 4 registers, or too many return
values.

General Answer: use the stack.
•  Caller pushes arguments and space for

results.
•  Callee uses arguments and fills in results.
•  Caller pops everything.

CS031 Lecture 16 25

Arguments on the Stack

average the values in $s0 and $s1, put the
result in $s2

 sub $sp,$sp,12 # space for rslt.
 sw $s0,8($sp) # push 1st param
 sw $s1,12($sp) # push 2nd param
 jal average
 lw $s2,4($sp) # get result
 add $sp,$sp,12
 done

average:
 sub $sp,$sp,4
 sw $ra,4($sp)
 lw $t0,12($sp) # load 1st param
 lw $t1,16($sp) # load 2nd param
 add $t0,$t0,$t1
 div $t0,$t0,2
 sw $t0,8($sp) # store result
 lw $ra,4($sp) # pop ra
 add $sp,$sp,4
 jr $ra # return

CS031 Lecture 16 26

Arguments on the Stack

average the values in $s0 and $s1, put the
result in $s2

 sub $sp,$sp,12 # space for rslt.
 sw $s0,8($sp) # push 1st param
 sw $s1,12($sp) # push 2nd param
 jal average
 lw $s2,4($sp) # get result
 add $sp,$sp,12
 done

($s0)

($s1)

$sp

CS031 Lecture 16 27

Arguments on the Stack
average the values in $s0 and $s1, put the
result in $s2

 sub $sp,$sp,12 # space for rslt.
 sw $s0,8($sp) # push 1st param
 sw $s1,12($sp) # push 2nd param
 jal average
 lw $s2,4($sp) # get result
 add $sp,$sp,12
 done

average:
 sub $sp,$sp,4
 sw $ra,4($sp)

 lw $t0,12($sp) # load 1st param
 lw $t1,16($sp) # load 2nd param
 add $t0,$t0,$t1
 div $t0,$t0,2
 sw $t0,8($sp) # store result
 lw $ra,4($sp) # pop ra
 add $sp,$sp,4
 jr $ra # return

($ra)

($s0)

($s1)

$sp

CS031 Lecture 16 28

Arguments on the Stack

average the values in $s0 and $s1, put the
result in $s2

 sub $sp,$sp,12 # space for rslt.
 sw $s0,8($sp) # push 1st param
 sw $s1,12($sp) # push 2nd param
 jal average
 lw $s2,4($sp) # get result
 add $sp,$sp,12
 done

average:
 sub $sp,$sp,4
 sw $ra,4($sp)

 lw $t0,12($sp) # load 1st param
 lw $t1,16($sp) # load 2nd param

 add $t0,$t0,$t1
 div $t0,$t0,2
 sw $t0,8($sp) # store result
 lw $ra,4($sp) # pop ra
 add $sp,$sp,4
 jr $ra # return

CS031 Lecture 16 29

Stack Allocation

Where are these variables allocated?

int fact(int n)
{
 if (n == 0)
 return 1;
 else {
 int f = fact(n-1);
 return n * f;
 }
}

CS031 Lecture 16 30

Stack Allocation

Can we allocate an array on the stack?
size of the array in $s1
address of the array will be in $s2

 mult $t0,$s1,4
 sub $sp,$sp,$t0

 add $s2,$sp,4

What is the life time of this array?

How do I access the element i?

 mult $t1,”i”,4
 add $t1,$s2,$t1
 lw $t0,($s2)

You can do that in C/C++?
 int* a = (int*) alloca(sizeof(int)*size);

CS031 Lecture 16 31

Are we done?

“done” does not exist?
  just a short end for

jr $ra

But where are we jumping?

