Counting

number of zero/one strings of length \(n = 2^n \)

Product Rule
\(S_1, S_2, ..., S_k \) then \(|S_1 \times S_2 \times ... \times S_k| = |S_1| \times |S_2| \times ... \times |S_k| \)

Proof: Easy Induction

Count functions
\(|X| = n \) and \(|Y| = m \)
So number of functions \(f : X \rightarrow Y = m^n \)

Ex \(f : X \rightarrow \{0, 1\} \) we get \(2^n \)
Ex \(f : X \rightarrow \{0, 1, 3\} \) we get \(3^n \)

- number of functions \(f : X \rightarrow Y \) that are injective (one-to-one) =
 \[m(m-1)...(m-n+1) \]

- number of surjective function (onto) is complicated

- number of bijective functions the same as number of injective functions

Prop if \(|X| = |Y| \) and \(f : X \rightarrow Y \) is injective then \(f \) is surjective.

Thus we can just count the number of bijections is the number of injections if the size of the sets is the same.

Factorial

Definition of ‘n factorial’: For \(n \in \mathbb{Z} \ n \geq 1 \)

\[n! = n(n-1)...(1) \]

define \(0! = 1 \)

Permutation

Consider \(f : X \rightarrow X \). If \(f \) is a bijection then, it is called a **permutation**. Let \(|X| = n \). The number of permutations of \(X \) is \(n! \)
Definition for $n \geq k \geq 0 \in \mathbb{Z}$

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

This is read 'n choose k'

Claim: $\binom{n}{k}$ = number of ways to select k objects from an n element set
also number of subsets of size k of an n-element set

Note that number of subsets of n-element sets = 2^n

$\binom{n}{k}$ = number of 0/1 strings of length n with exactly k 1’s