Tiling

Proposition: A 2^n-by-2^n chessboard with one corner missing can be tiled with L-shaped tiles.

Strong Induction

A *strong induction* proof is an induction proof in which the inductive hypothesis assumes that the predicate in question, $P(n)$, holds for all n between the base value b, and k for some arbitrary k. In other words, it is of the form

Base Case Prove $P(b)$ is true for some base value b. (There may be multiple base cases.)

Inductive Step Assume $P(n)$ is true for $b \leq n \leq k$ for fixed arbitrary k, then prove that this implies $P(k+1)$.

Fundamental Theorem of Arithmetic

Fundamental Theorem of Arithmetic: Any positive integer greater than 1 can be (uniquely) written as a product of primes.