Counting with Bijections

Notation: \(\{0, 1\}^n \) denotes the set of 0/1 strings of length \(n \).

A *bijective proof* proves that the cardinalities of two finite sets \(A \) and \(B \) are equal by constructing a bijection from \(A \) to \(B \).

A *counting function* is a function whose domain is \(\mathbb{Z} \) or \(\mathbb{N} \) and whose codomain is \(\mathbb{Z} \) or \(\mathbb{N} \). The input to a counting function is a parameter of some type of structure we’d like to count, and the output of a counting function is the number of such structures.

Induction

Induction is a proof method to prove the proposition \(P(n) \) is true \(\forall n \in \mathbb{N} \) (or \(\forall n \geq b \) for some \(b \in \mathbb{N} \).) A proof by induction comprises two parts:

Base Case Prove \(P(b) \) is true (where \(b \) is the smallest index.)

Induction Step Assume \(P(k) \) is true for some fixed but arbitrary \(k \) (this is called the *inductive hypothesis*), and then show that \(P(k) \implies P(k + 1) \).

After these two steps, conclude what you’ve done to finish off the proof.

Note: If you use a predicate \(P(n) \) in your proof, you **must clearly define** what \(P(n) \) is.