RSA Encryption

1. The receiver chooses two distinct large primes p and q. The receiver also finds k such that $1 < k < \varphi(pq)$ and $\gcd(k, \varphi(pq)) = 1$, and finds a d such that $kd \equiv 1 \pmod{\varphi(pq)}$.

2. The receiver keeps d private and makes k and $n = pq$ public.

3. The sender, intending to send message m where $m < n$, computes

$$r \equiv m^k \pmod{n}, \quad r < n$$

and sends r to the receiver.

4. The receiver decodes $x \equiv r^d \pmod{n}, \quad x < n$.

Claim: $x = m$. (Proven.)