Equivalence Class

Defn: R on A, $[a]_R = \{x \in A | (x, a) \in R\}$. $[a]_R$ is the equivalence class of a.

Partitions

Defn: A partition of set A is a collection of disjoint subsets of A that cover A. So, $P = B_1B_2..B_n$ where $B_i \subseteq A$

- $\forall a \in A, a \in B$ for some i
- $\forall i, j B_i \cap B_j = \emptyset$

Prop: Given an eq relation on R on a set A, the eq classes partition A.

Proof. Let R be eq relation on A. Consider all distinct equiv classes. (distinct = not equal as a set).

1. $\forall a \in A, (a, a) \in R \implies a \in [a]_R$ (bc Reflex)

2. Let B_1, B_2 be distinct so $B_1 \neq B_2$

 Claim: $B_1 \cap B_2 = \emptyset$

 Assume for the sake of contradiction that $B_1 \cap B_2 \neq \emptyset$

 Let $x \in B_1 \cap B_2$

 $B_1 = [y]_R$ and $B_2 = [z]_R$

 Let $w \in B_1 \implies (w, y) \in R$

 $x \in B_1 \implies (x, y) \in R \implies (y, x) \in R \implies (w, x) \in R$

 $x \in B_2 \implies (x, z) \in R \implies (w, z) \in R \implies w \in B_2$

 So $B_1 \subseteq B_2$