Last time

Constructive proofs, Existential Proof

Proposition: \(\exists x, y \in \mathbb{R} \setminus \mathbb{Q} \text{ st } x^y \in \mathbb{Q} \)

Proof. Recall \(\sqrt{2} \) is irrational Consider: \(\sqrt{2}^{\sqrt{2}} \)

Case 1: \(\sqrt{2}^{\sqrt{2}} \) is rational, in which case we are done

Case 2: \(\sqrt{2}^{\sqrt{2}} \) is irrational

Then let \(x = \sqrt{2}^{\sqrt{2}}, y = \sqrt{2}, x^y = 2 \)

\[\square \]

Cartesian Product

Let \(A, B \) be sets. Define \(A \times B = \{(a, b) | a \in A \text{ and } b \in B\} \).

Note \((a, b) \) is an ordered pair.

Ex: \(A = \{1, 2, a\} \) and \(B = \{b, 2, 3\} \)

\((1, b), (1, 2), (2, 2), (a, 3) \in A \times B \)

\((b, 2) \notin A \times B \)

Ex: \(\mathbb{R} \times \mathbb{R} = \mathbb{R}^2 \) This is all the points on the plane

\(\mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2 \) This is all integer coordinates on the plane

\(\mathbb{R} \times \mathbb{R} \ldots \times \mathbb{R} = \mathbb{R}^n \) n-fold Cartesian product

Binary Strings as Cartesian Products

\(S = \{0, 1\} \)

\(S \times S \times S \times \ldots \times S = S^n = \text{Binary strings of length } n \)

Relations

A relation \(R \) on \(A \times B \) is any subset of \(A \times B \), \(R \subseteq A \times B \)

A relation \(R \subseteq A \times A \) is called a “relation on \(A \)”

Ways to denote that a pair \((a, b) \) is in relation \(R \): \((a, b) \in R \) or \(aRb \)
Properties of Relations

Let R be a relation on A

1. **Reflexive**: R is called reflexive if $\forall a \in A, (a, a) \in R$

2. **Symmetric**: R is called symmetric if $\forall a, b \in A, (a, b) \in R \implies (b, a) \in R$

3. **Transitive**: R is called transitive $\forall a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R \implies (a, c) \in R$

Ex 1: R on \mathbb{Z} $R \subseteq \mathbb{Z}$

≤ Relation: $R = \{(a, b) | a \leq b\}$, Reflexive and Transitive, but not symmetric

Ex 2: R on \mathbb{Z} Parity Relation: $R = \{(a, b) | \text{a and b are both even or a and b are both odd}\}$

Reflexive, Symmetric and Transitive - This is an equivalence relation

Equivalence Relation: a relation that is reflexive, symmetric and transitive

Equivalence relations create **partitions**

Equivalence Class

Defn: R on A, $[a]_R = \{x \in A | (x, a) \in R\}$. $[a]_R$ is the equivalence class of a.

Example:

R parity on \mathbb{Z}

$[2]_{\text{Parity}} = \{\ldots -4, -2, 0, 2, 4, \ldots\}$

$[2]_{\text{Parity}} = [8]_{\text{Parity}} = \text{[Any even number]}$\text{Parity} $[3]_{\text{Parity}} = \{\ldots -3, -1, 1, 3, \ldots\}$

We have now examined all equivalence classes in this relation. There are 2 equivalence classes for Parity. These equivalence classes **partition** all of the integers. Every integer is either even or odd but not both. It breaks up the integers into two disjoint subsets.

Partitions

Defn: A partition of set A is a collection of disjoint subsets of A that cover A. So, $P = B_1B_2\ldots B_n$ where $B_i \subseteq A$

- $\forall a \in A, a \in B$ for some i
• \(\forall i, j B_i \cap B_j = \emptyset \)

Prop: Given an eq relation on \(R \) on a set \(A \), the eq classes partition \(A \).

Proof. Let \(R \) be eq relation on \(A \). Consider all **distinct** equiv classes. (distinct = not equal as a set).

1. \(\forall a \in A, (a, a) \in R \implies a \in [a]_R \) (bc Reflexive)

2. Let \(B_1, B_2 \) be distinct so \(B_1 \neq B_2 \)

 Claim: \(B_1 \cap B_2 = \emptyset \)
 Assume for the sake of contradiction that \(B_1 \cap B_2 \neq \emptyset \)

 Let \(x \in B_1 \cap B_2 \)
 \(B_1 = [y]_R \) and \(B_2 = [z]_R \)

 Let \(w \in B_1 \implies (w, y) \in R \) \(x \in B_1 \implies (x, y) \in R \implies (y, x) \in R \implies (w, x) \in R \)

 \(x \in B_2 \implies (x, z) \in R \implies (w, z) \in R \implies w \in B_2 \)

 So \(B_1 \subseteq B_2 \)

 Note that that proof to show \(B_2 \subseteq B_1 \) is exactly the same with \(B_1 \) and \(B_2 \) reversed

\[\square \]

Example: Fractions in lowest terms

\(R \) on \(Q \) so \(R \subseteq Q \times Q \)

\((\frac{a}{b}, \frac{x}{y}) \in R \) iff \(a \cdot y = b \cdot x \)

\([\frac{1}{2}]_R \) contains: \(\frac{2}{4}, \frac{4}{8}, \frac{50}{100} \)