Induction

\(P(n) \forall n \geq b \), \(n \in \mathbb{Z} \)

- Base Case: \(p(b) \)
- Inductive step: \(p(k) \implies p(k+1) \)

Ex 1 \(p(n) : 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \)

Proof. Base Case: \(p(1) \)
\[
1 = \frac{1(1+1)}{2}
\]

Inductive step: Assume \(p(k) \) is true for a fixed but arbitrary value \(k \)
Claim: Want to show \(p(k+1) \) is true

Proof.
\[
p(k+1) : 1 + 2 + 3 + \ldots + k + k + 1 = \frac{k(k+1)}{2} + \frac{2 \cdot (k+1)}{2} \quad \text{by Inductive Hypothesis}
\]
\[
= \frac{(k+1)(k+2)}{2}
\]

Ex 2: \(p(n) \): number of subsets of an \(n \) element set = \(2^n \) for \(n > 0 \)
\(P(0) : 1 = 2^0 = \text{number of subsets of } \emptyset \)
\(P(1) : 2 = 2^1 = \text{number of subsets of a 1 element set} \)

Inductive step: Assume \(P(k) \) for a fixed but arbitrary value of \(k \)
Claim: \(P(k+1) \) is true. Let \(X \) be a set with \(k+1 \) elements. Let \(y \in X \)

How many subsets of \(X \) contain \(y \)?
y plus any subset of \(X \setminus \{y\} \)
By our I.H., there are \(2^k \) subsets of \(X \setminus \{y\} \) so there are still \(2^n \) when we add \(y \)

How many subsets of \(X \) do no contain \(y \)?
Any subset of \(X \setminus \{y\} \)
By our I.H., there are \(2^k \) subsets of \(X \setminus y \)
Total number of subsets = \(2^k + 2^k = 2^{k+1} \)