Probability Cont.

Ex. Suppose we have a random binary string of length n: $\{0,1\}^n$. Let p represent the probability that the i^{th} bit is a 1. We can define the following random variables:

- $X(\omega) =$ total number of 1’s in ω
- $Y(\omega) = 2 \cdot (\text{number of 1’s in } \omega) - 1 \cdot (\text{number of 0’s in } \omega)$
- $Z(\omega) = 7$

Note that there are infinitely many possible random variables to define.

Ex. Suppose $n = 1$. Using the random variables defined in the previous example, what is the expectation of the random variable X, $E[X]$?

Using the definition of expectation, we see

\[
E[X] = \sum_{\omega \in S} p(\omega) \cdot X(\omega)
= p(0) \cdot X(0) + p(1) \cdot X(1)
= (1 - p) \cdot 0 + p \cdot 1
= p
\]

What if $n = 2$? In this case, our sample space S is $S = \{00, 01, 10, 11\}$ and the expectation can be determined as follows:

\[
E[X] = \sum_{\omega \in S} p(\omega) \cdot X(\omega)
= p(00) \cdot X(00) + p(10) \cdot X(10) + p(01) \cdot X(01) + p(11) \cdot X(11)
= (1 - p)^2 \cdot 0 + p \cdot (1 - p) \cdot 1 + (1 - p) \cdot p \cdot 1 + p^2 \cdot 2
\]

For example, if $p = 1/2$, our expectation is $\frac{1}{4} + \frac{1}{4} + \frac{2}{4} = 1$.

Linearity of Expectation

Suppose we have a random variable X that can be broken into the sum of other random variables:

\[X = X_1 + X_2 + \ldots + X_n\]
Then the expectation of X can be written as follows:

$$E[X] = \sum_{\omega \in S} p(\omega)X(\omega)$$

$$= \sum_{\omega \in S} p(\omega)(X_1(\omega) + ... + X_n(\omega))$$

$$= \sum_{\omega \in S} \left(p(\omega)X_1(\omega) + ... + p(\omega)X_n(\omega)\right)$$

$$= \sum_{\omega \in S} p(\omega)X_1(\omega) + ... + \sum_{\omega \in S} p(\omega)X_n(\omega)$$

$$= E[X_1] + ... + E[X_n]$$

Indicator Random Variables

Suppose again that we have a binary string of length n, $\{0, 1\}^n$. Let $X(\omega)$ be the number of 1’s in ω. We can then define

$$X_i = \begin{cases}
1 & \text{if the } i^{th} \text{ bit is a 1} \\
0 & \text{otherwise}
\end{cases}$$

Then we have

$$X = \sum_{i=1}^{n} X_i$$

and using linearity of expectation, we can determine the expectation of X as follows:

$$E[X] = E[X_1 + X_2 + ... + X_n]$$

$$= E[X_1] + E[X_2] + ... + E[X_n]$$

$$= p + p + ... + p$$

$$= n \cdot p$$

Ex. Random Graphs

Suppose we have a random graph with vertices $V = \{1, 2, ..., n\}$, and that we include each edge with probability p.

Question: What is the expected number of triangles in this model?

We define a random variable $T : S \rightarrow \mathbb{R}$ such that $T(\omega) =$ number of triangles in ω. We can use the following random variable:

$$T_i = \begin{cases}
1 & \text{if the } i^{th} \text{ triangle is in } \omega \\
0 & \text{otherwise}
\end{cases}$$
We have \(\binom{n}{3} \) possible triangles, so our random variable \(T \) can be written \(T = T_1 + ... + T_{\binom{n}{3}} \). Then

\[
E[T] = \sum_{i=1}^{\binom{n}{3}} E[T_i]
\]

\[
= \sum_{i=1}^{\binom{n}{3}} p^3 \cdot 1 + 0
\]

\[
= \binom{n}{3} \cdot p^3
\]

Ex. 3-SAT Random Assignment Consider a proposition with \(m \) clauses of the following form:

\[
(x_1 \lor \neg x_2 \lor x_7) \land \\
(x_3 \lor \neg x_6 \lor x_5) \land \\
(\neg x_7 \lor x_3 \lor \neg x_1) \land ...
\]

Let’s assign a 0 or a 1 to each \(x_i \) at random with probability \(p \). Let \(C \) be the random variable that represents the number of clauses that are satisfied. \(C \) can then be broken up using the following indicator random variable:

\[
C_i = \begin{cases}
1 & \text{if the } i^{th} \text{ clause is satisfied} \\
0 & \text{otherwise}
\end{cases}
\]

Note that

\[
p(C_i = 1) = 1 - p(C_i = 0) = 1 - p^3
\]

So we have

\[
E[C] = (1 - p^3) \cdot m
\]

If we assign 0/1 with probability \(p = 1/2 \) then we expect to satisfy 7/8 of our clauses.