Functions, Injectivity, Surjectivity, Bijections

Michael L. Littman

CS 22 2020

February 3, 2020
Overview

Relation Diagrams (4.4.1)

Relational Images (4.4.2)
Binary relations

Definition. A binary relation, R, consists of a set, A, called the domain of R, a set, B, called the codomain of R, and a subset of $A \times B$ called the graph of R.

![Binary relation diagram]
Properties of relations

A binary relation:

- is a *partial function* when it has the \([\leq 1 \text{ arrow out}]\) property.
 Book: “function”. Us: ”function” is \([= 1 \text{ arrow out}]\) property.
- is *surjective* when it has the \([\geq 1 \text{ arrows in}]\) property.
- is *total* when it has the \([\geq 1 \text{ arrows out}]\) property.
- is *injective* when it has the \([\leq 1 \text{ arrow in}]\) property.
- is *bijective* when it has both the \([= 1 \text{ arrow out}]\) and the \([= 1 \text{ arrow in}]\) properties.
Example relation #1

partial function: \([\leq 1 \text{ out}]\). surjective: \([\geq 1 \text{ in}]\). total: \([\geq 1 \text{ out}]\).
injective: \([\leq 1 \text{ in}]\). bijective: \([= 1 \text{ out}]\) and \([= 1 \text{ in}]\).

total, surjective, function.
Example relation #2

partial function: ≤ 1 out. surjective: ≥ 1 in. total: ≥ 1 out. injective: ≤ 1 in. bijective: $= 1$ out and $= 1$ in.

total, injective, function.
Example relation #3

partial function: ≤ 1 out]. surjective: ≥ 1 in]. total: ≥ 1 out].
injective: ≤ 1 in]. bijective: $= 1$ out] and $= 1$ in].

Equation $y = 1/x^2$ on \mathbb{R}^+. x is an element in the domain, y is an element in the co-domain.

bijective partial function. (implies surjective, total, injective.)
Example relation #4

partial function: \([\leq 1 \text{ out}].\) surjective: \([\geq 1 \text{ in}].\) total: \([\geq 1 \text{ out}].\)
injective: \([\leq 1 \text{ in}].\) bijective: \([= 1 \text{ out}]\) and \([= 1 \text{ in}].\)

Equation \(y = 1/x^2\) on \(\mathbb{R} \)
Image definition

Definition. The image of a set Y under a relation R, written $R(Y)$, is the subset of elements of the codomain B of R that are related to some element in Y.

In terms of the relation diagram, $R(Y)$ is the set of points with an arrow coming in that starts from some point in Y.

$$R(Y) = \{x \in B \mid \exists y \in Y, y \ R \ x\}.$$
Inverse definition

Definition: The *inverse* R^{-1} of a relation $R : A \rightarrow B$ is the relation from B to A defined by the rule

$$b R^{-1} a \iff a R b.$$

Definition: The image of a set under the relation R^{-1} is called the *inverse image* of the set. That is, the inverse image of a set X under the relation R is defined to be $R^{-1}(X)$.

Example: $x R y$ iff there's a word with first letter x and second letter y. The image $R(\{c, k\})$ is the letters that can appear after c or k at the beginning of a word. It's the set $\{a, b, e, h, i, l, n, o, r, s, t, u, v, w, y, z\}$.

The inverse image $R^{-1}(\{c, k\})$ is the letters that can appear before c or k at the beginning of a word. It's the set $\{a, e, i, o, s, t, u, y\}$.
Inverses of relations

What can we infer about R^{-1} if R is:

- partial function? injective
- surjective? total
- total? surjective
- injective? partial function
- bijective? bijective
- function? injective and surjective
More examples to consider

Make natural examples for each combination of properties.

- \sqrt{x} on \mathbb{R}
- $\sqrt{16 - \sqrt{x}}$ on \mathbb{R}
- $|x + 10|$ on \mathbb{Z}
- $|x \mod 2|$ on \mathbb{Z}
- $\sin(x)$ on \mathbb{R}