Foolproof Proof-writing

Nicolas Schank, Nathan Malimban

March 8, 2017
Introduction: High School Lied to You

Who remembers writing proofs like this?

Prove the identity

\[\cot(x) + \tan(x) = \cos(x) \csc(x) \]

\[(\sin^2(x) \sec^2(x) + \sin^2(x) \csc^2(x)) \]

\[\cos(x) \csc(x) \]

\[(\sin^2(x) \cos^2(x) + \sin^2(x) \sin^2(x)) \]

\[\cot(x) \]

Can you spot any mistakes in this proof?
Introduction: High School Lied to You

Who remembers writing proofs like this?

\[
cot(x) + \tan(x) = \cos(x) \csc(x) \\
(\sin^2(x) \sec^2(x) + \sin^2(x) \csc^2(x)) = \cot(x) \\
(\sin^2(x) \cos^2(x) + \sin^2(x) \sin^2(x)) = \cot(x) \\
(\tan^2(x) + \cos^2(x) + \sin^2(x)) = \cot(x) + \tan(x)
\]
Who remembers writing proofs like this?
Prove the identity
\[\cot(x) + \tan(x) = \cos(x) \csc(x) \left(\sin^2(x) \sec^2(x) + \sin^2(x) \csc^2(x) \right). \]
Who remembers writing proofs like this?
Prove the identity
\[\cot(x) + \tan(x) = \cos(x) \csc(x) \left(\sin^2(x) \sec^2(x) + \sin^2(x) \csc^2(x) \right). \]

\[
\begin{align*}
\cos(x) \csc(x) \left(\sin^2(x) \sec^2(x) + \sin^2(x) \csc^2(x) \right) & \quad (1) \\
= \cot(x) \left(\frac{\sin^2(x)}{\cos^2(x)} + \frac{\sin^2(x)}{\sin^2(x)} \right) & \quad (2) \\
= \cot(x)(\tan^2(x) + \cos^2(x) + \sin^2(x)) & \quad (3) \\
= \tan(x) + \cot(x) & \quad (4)
\end{align*}
\]
Introduction: High School Lied to You

Who remembers writing proofs like this?
Prove the identity
\[\cot(x) + \tan(x) = \cos(x) \csc(x) \left(\sin^2(x) \sec^2(x) + \sin^2(x) \csc^2(x) \right). \]

\[\cos(x) \csc(x) \left(\sin^2(x) \sec^2(x) + \sin^2(x) \csc^2(x) \right) \quad (1) \]
\[= \cot(x) \left(\frac{\sin^2(x)}{\cos^2(x)} + \frac{\sin^2(x)}{\sin^2(x)} \right) \quad (2) \]
\[= \cot(x) (\tan^2(x) + \cos^2(x) + \sin^2(x)) \quad (3) \]
\[= \tan(x) + \cot(x) \quad (4) \]

Can you spot any mistakes in this proof?
Of course you can’t!
Introduction: High School Lied to You

Of course you can’t!

Because this isn’t a good proof.
What is a good proof?

Any ideas?
What is a good proof?

Here are some of ours:
What is a good proof?

Here are some of ours:

1. It has to be *clear*.
What is a good proof?

Here are some of ours:

1. It has to be clear.
2. It has to have good structure.
What is a good proof?

Here are some of ours:

1. It has to be *clear*.
2. It has to have good *structure*.
3. It has to *flow*.
Outline

1. Structure
2. Clarity
3. Flow
Outline

1. Structure
2. Clarity
3. Flow
Structure: Proofs as Essays
Structure: Proofs as Essays

- Start with an outline.
Structure: Proofs as Essays

- Start with an outline.
- Group connected ideas into paragraphs.
Structure: Proofs as Essays

▶ Start with an outline.
▶ Group connected ideas into paragraphs.
▶ Write a first draft, using complete sentences.
Structure: Proofs as Essays

- Start with an outline.
- Group connected ideas into paragraphs.
- Write a first draft, using complete sentences.
- Proofread. (Literally)
Structure: Sentence Structure

Simple sentence structure is generally easier to read.

Don't worry about sounding a little formulaic.

Use the active voice.

Example

It will be proved via contradiction...

We now prove via contradiction...
Simple sentence structure is generally easier to read.
Structure: Sentence Structure

- Simple sentence structure is generally easier to read.
- Don’t worry about sounding a little formulaic.
Structure: Sentence Structure

- Simple sentence structure is generally easier to read.
- Don’t worry about sounding a little formulaic.
- Use the active voice.
Structure: Sentence Structure

- Simple sentence structure is generally easier to read.
- Don’t worry about sounding a little formulaic.
- Use the active voice.

Example

It will be proved via contradiction...
We now prove via contradiction...
Structure: Sentence Structure

- Simple sentence structure is generally easier to read.
- Don’t worry about sounding a little formulaic.
- Use the active voice.
- Try to only justify one thing per sentence.
Structure: Overall Structure

- Some proof types have structure that you can use to your advantage!
 - Induction
 - Element Method
 - Bijections
 - Bidirectional Proofs (If and Only If)
Some proof types have structure that you can use to your advantage!
Structure: Overall Structure

- Some proof types have structure that you can use to your advantage!
 - Induction
 - Element Method
 - Bijections
 - Bidirectional Proofs (If and Only If)
Structure: Overall Structure

- Some proof types have structure that you can use to your advantage!
- Avoid using lists inside a proof.
Some proof types have structure that you can use to your advantage!

Avoid using lists inside a proof. The description environment looks nice though!

Injectivity Proof of the injectivity of f would go here. It nicely aligns the paragraphs within the proof.

Surjectivity Proof of the surjectivity of f would go here.
Example Proof 1: Problem Statement

Consider the function $f : \mathbb{Z} \to \mathbb{E}$, $f(x) = 2x$. Prove that f is a bijection.
Example Proof 1: Rough Draft

Proof.

It is necessary to show that f is surjective and injective, or that $f(x) = f(y) \iff x = y$ $\forall x, y \in \mathbb{Z}$ and that $\forall y \in E$, $\exists x \in \mathbb{Z}$ where $f(x) = y$. For any $y \in E$ that you can think of, by definition of an even number, $y = 2x$ for some $x \in \mathbb{Z}$, since every even number can be divided by 2, no matter what. And if $f(x) = f(y)$, then $2x = 2y$ which would suggest that $x = y$. \qed
Example Proof 1: Polished

Proof.
To prove that f is a bijection, we must show injectivity and surjectivity.

Injectivity Suppose we have $x, y \in \mathbb{Z}$ such that $f(x) = f(y)$. Then $2x = 2y$, which means $x = y$, as needed.

Surjectivity Consider an arbitrary $y \in \mathbb{E}$. By definition of an even number, $y = 2x$ for some $x \in \mathbb{Z}$. Thus $f(x) = 2x = y$, proving surjectivity.

Thus, f is a bijection. \qed
Outline

1. Structure
2. Clarity
3. Flow
Introduction: What are you about to do?

Example

For this induction step, we will consider three cases. In order to prove that \(R \) is an equivalence relation, we need...
Clarity: Keeping the Reader Informed

▶ Introduction: What are you about to do?
Clarity: Keeping the Reader Informed

▶ Introduction: What are you about to do?

Example
For this induction step, we will consider three cases.
Example
For this induction step, we will consider three cases. In order to prove that R is an equivalence relation, we need...
Clarity: Keeping the Reader Informed

- Introduction: What are you about to do?
- Use transitions to indicate your next move.
Clarity: Keeping the Reader Informed

- Introduction: What are you about to do?
- Use transitions to indicate your next move.

Example

Thus, we have...
But we recall from earlier that...
Combining this with our result from case 1...
Clarity: Keeping the Reader Informed

▸ Introduction: What are you about to do?
▸ Use transitions to indicate your next move.
▸ If you use a theorem or nontrivial property to make a step, say so.
Clarity: Keeping the Reader Informed

- Introduction: What are you about to do?
- Use transitions to indicate your next move.
- If you use a theorem or nontrivial property to make a step, say so.

Example

...by the Fundamental Theorem of Arithmetic.
Clarity: Keeping the Reader Informed

- Introduction: What are you about to do?
- Use transitions to indicate your next move.
- If you use a theorem or nontrivial property to make a step, say so.

Example

...by the Fundamental Theorem of Arithmetic.
By definition of...
Clarity: Keeping the Reader Informed

- **Introduction:** What are you about to do?
- **Use transitions to indicate your next move.**
- **If you utilize a theorem or nontrivial property to make a step, say so.**
- **Conclusion:** What did you just do?
Clarity: Keeping the Reader Informed

- Introduction: What are you about to do?
- Use transitions to indicate your next move.
- If you utilize a theorem or nontrivial property to make a step, say so.
- Conclusion: What did you just do?

Example

...thus we have reached a contradiction.
Clarity: Keeping the Reader Informed

▶ Introduction: What are you about to do?
▶ Use transitions to indicate your next move.
▶ If you utilize a theorem or nontrivial property to make a step, say so.
▶ Conclusion: What did you just do?

Example

...thus we have reached a contradiction.
Since we have proven $P(1)$ and have shown $P(k)$ implies $P(k + 1)$,
we have shown $P(n)$ for all $n \in \mathbb{Z}^+$.
Use notation to make your proofs simpler. Variables (x, S, f) are like abbreviations. Be prudent about assigning variable names.

Example:

$$S = \{ x \in P(S) \mid x \geq 3 \}$$

$$S = S \times S$$
Clarity: Notation

- Use notation to make your proof *simpler*

Variables (\(x, S, f\)) are like abbreviations. Be prudent about assigning variable names.

Example:

\[S = \{x \in P(S) \mid |x| = 3\}\]

\[S = S \times S\]
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables \((x, S, f)\) are like abbreviations.
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables (x, S, f) are like abbreviations.
- Be prudent about assigning variable names.

\[
S = \{ x \in P(S) \mid |x| = 3 \}
\]

\[
S \times S
\]
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables (x, S, f) are like abbreviations.
- Be prudent about assigning variable names.

Example

$$S = \{x \in \mathcal{P}(S) \mid |x| = 3\}$$
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables \((x, S, f)\) are like abbreviations.
- Be prudent about assigning variable names.

Example

\[S = \{ x \in \mathcal{P}(S) \mid |x| = 3 \} \]

\[S = S \times S \]
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables \((x, S, f)\) are like abbreviations.
- Be prudent about assigning variable names.
- Be mindful about reusing variable names.
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables (x, S, f) are like abbreviations.
- Be prudent about assigning variable names.
- Be mindful about reusing variable names.
- Be careful about mixing symbols and words.
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables (x, S, f) are like abbreviations.
- Be prudent about assigning variable names.
- Be mindful about reusing variable names.
- Be careful about mixing symbols and words.
 - Don’t replace a single word with a single symbol, just like you wouldn’t write “$3 + four$”.

Some symbols to keep in mind:

- \exists
- \forall
- \therefore
- $=$
- \Rightarrow
- \Leftarrow
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables (x, S, f) are like abbreviations.
- Be prudent about assigning variable names.
- Be mindful about reusing variable names.
- Be careful about mixing symbols and words.
 - Don’t replace a single word with a single symbol, just like you wouldn’t write “3 + four”.
 - Similarly, don’t write ”We know ∃ a bijection...”. Be consistent within a given context.
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables (x, S, f) are like abbreviations.
- Be prudent about assigning variable names.
- Be mindful about reusing variable names.
- Be careful about mixing symbols and words.
 - Don’t replace a single word with a single symbol, just like you wouldn’t write “$3 +$ four”.
 - Similarly, don’t write ”We know \exists a bijection...”. Be consistent within a given context.
 - Some symbols to keep in mind: $\exists \forall \therefore \implies =$
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables (x, S, f) are like abbreviations.
- Be prudent about assigning variable names.
- Be mindful about reusing variable names.
- Be careful about mixing symbols and words.
 - Don’t replace a single word with a single symbol, just like you wouldn’t write “3 + four”.
 - Similarly, don’t write ”We know \exists a bijection...”. Be consistent within a given context.
 - Some symbols to keep in mind: \exists \forall \therefore \Rightarrow $=$

Example

for all x in S
Clarity: Notation

- Use notation to make your proof *simpler*
- Variables \((x, S, f)\) are like abbreviations.
- Be prudent about assigning variable names.
- Be mindful about reusing variable names.
- Be careful about mixing symbols and words.
 - Don’t replace a single word with a single symbol, just like you wouldn’t write “3 + four”.
 - Similarly, don’t write ”We know \(\exists\) a bijection...”. Be consistent within a given context.
 - Some symbols to keep in mind: \(\exists\ \forall\ \therefore\ \Rightarrow\ =\)

Example

- for all \(x\) in \(S\)
- \(\forall x \in S\)
Clarity: Notation

▶ Use notation to make your proof *simpler*.
▶ Variables \((x, S, f)\) are like abbreviations.
▶ Be mindful about reusing variable names.
▶ Be careful about mixing symbols and words.
 ▶ Don’t replace a single word with a single symbol, just like you wouldn’t write “3 + four”.
 ▶ Similarly, don’t write ”We know \(\exists\) a bijection...”. Be consistent within a given context.
▶ Short notation tips.
Clarity: Notation

- Use notation to make your proof simpler.
- Variables (x, S, f) are like abbreviations.
- Be mindful about reusing variable names.
- Be careful about mixing symbols and words.
 - Don’t replace a single word with a single symbol, just like you wouldn’t write “3 + four”.
 - Similarly, don’t write ”We know ∃ a bijection...”. Be consistent within a given context.
- Short notation tips.

Example

prime \(p \), relation \(R \)
Clarity: Notation

- Use notation to make your proof *simpler*.
- Variables (x, S, f) are like abbreviations.
- Be mindful about reusing variable names.
- Be careful about mixing symbols and words.
 - Don’t replace a single word with a single symbol, just like you wouldn’t write “3 + four”.
 - Similarly, don’t write ”We know ∃ a bijection...”. Be consistent within a given context.

- Short notation tips.

Example

prime p, relation R

a₁, a₂, . . . , aₙ instead of a, b, c, . . .
Clarity: Notation

▶ Use notation to make your proof simpler.
▶ Variables \((x, S, f)\) are like abbreviations.
▶ Be mindful about reusing variable names.
▶ Be careful about mixing symbols and words.
 ▶ Don’t replace a single word with a single symbol, just like you wouldn’t write “3 + four”.
 ▶ Similarly, don’t write ”We know \(\exists\) a bijection...”. Be consistent within a given context.

▶ Short notation tips.

Example

prime \(p\), relation \(R\)

\(a_1, a_2, \ldots, a_n\) instead of \(a, b, c, \ldots\)

\(s \in S\)
Example Proof 2: Problem Statement

Prove that there are infinitely many primes.
Example Proof 2: Rough Draft

Proof.
What if there were only finitely many primes? \(p_1, p_2, \ldots, p_n \) is the finite list of all these primes.

\[Q = p_1 p_2 \cdots p_n + 1 \]

If \(Q \) is prime, then \(Q \) is greater than \(p_i \). \(Q \) is not \(\in \) the list of primes. \(\Rightarrow \Leftarrow \). If \(Q \) is not prime then \(p_i \mid Q \) and \(p_i \) divides \(p_1 p_2 \cdots p_n \). \(p_i \) doesn’t divide \(1 \). \(Q - p_1 p_2 \cdots p_n = 1 \). \(\Rightarrow \Leftarrow \)
Example Proof 2: Polished

Proof.
Assume for the sake of contradiction that there are finitely many primes. Let $P = \{p_1, p_2, \ldots, p_n\}$ be the set of all primes. Now, let $q = p_1p_2\cdots p_n + 1$. We aim to show that q can be neither prime nor composite. We consider the two cases:

Prime Suppose q is prime. But $q > p_i$ for all i, meaning that $q \not\in P$. This contradicts our definition of P.

Composite Suppose q is not prime; by the Fundamental Theorem of Arithmetic, q can be factored into primes. Consider p_i, one of these prime factors. Since $p_i \mid q$ and $p_i \mid p_1p_2\cdots p_n$, we know that $p_i \mid (q - p_1p_2\cdots p_n)$. But $q - p_1p_2\cdots p_n = 1$, meaning that $p_i \mid 1$. This is a contradiction.

Thus, we have proven that there cannot be finitely many primes. \qed
Outline

1. Structure
2. Clarity
3. Flow
You do not need to restate definitions.

Example: We are given that B_1, \ldots, B_k is a partition of U into distinct blocks such that every element in U is in some block.
Flow: Avoiding Redundancy

- You do not need to *restate* definitions.
Flow: Avoiding Redundancy

- You do not need to *restate* definitions.

Example

We are given that \(B_1, \ldots, B_k \) is a partition of \(U \) into distinct blocks such that every element in \(U \) is in some block.
Flow: Avoiding Redundancy

- You do not need to *restate* definitions.
- Exception: Recalling an earlier proven point or citing a sub-result out of context.
Flow: Avoiding Redundancy

- You do not need to *restate* definitions.
- Exception: Recalling an earlier proven point or citing a sub-result out of context.

Example

…it is a bijection. Because it is surjective…
Flow: Avoiding Redundancy

- You do not need to *restate* definitions.
- Exception: Recalling an earlier proven point or citing a sub-result out of context.

Example

...it is a bijection. Because it is surjective...
Recall that R is an equivalence relation. By the transitivity of R...
Flow: Avoiding Redundancy

- You do not need to *restate* definitions.
- Exception: Recalling an earlier proven point or citing a sub-result out of context.
- Examples are rarely very useful.
Flow: Avoiding Redundancy

- You do not need to *restate* definitions.
- Exception: Recalling an earlier proven point or citing a sub-result out of context.
- Examples are rarely very useful.
Flow: Using Meaningful Transitions

Example
Consider two distinct elements \(a_1, a_2 \in A \). Without loss of generality, \(a_1 < a_2 \).
Flow: Using Meaningful Transitions

- Hence, thus, therefore.

Example: Consider two distinct elements $a_1, a_2 \in A$. Without loss of generality, $a_1 < a_2$.
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
- ...as needed.
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
- ...as needed.
- Suppose...
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
- ...as needed.
- Suppose...
- Let x...
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
- ...as needed.
- Suppose...
- Let x...
- Consider...
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
- ...as needed.
- Suppose...
- Let x...
- Consider...
- Recall...
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
- ...as needed.
- Suppose...
- Let \(x \)...
- Consider...
- Recall...
- In particular...
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
- ...as needed.
- Suppose...
- Let x...
- Consider...
- Recall...
- In particular...
- Without loss of generality (wlog)
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
- ...as needed.
- Suppose...
- Let x...
- Consider...
- Recall...
- In particular...
- Without loss of generality (wlog)

Example

Consider two distinct elements $a_1, a_2 \in A$. Without loss of generality, $a_1 < a_2$.
Flow: Using Meaningful Transitions

- Hence, thus, therefore.
- We need to show...
 In order to prove...
- It suffices to show...
- ...as needed.
- Suppose...
- Let x...
- Consider...
- Recall...
- In particular...
- Without loss of generality (wlog)
- Clearly, obviously, trivially
Example Proof 3: Problem Statement

Consider the following relation on the set of integers:
\[\forall a, b \in \mathbb{Z}, (a, b) \in R \text{ if and only if } a \text{ and } b \text{ have the same remainder when divided by 3.} \]
Prove that \(R \) is transitive.
Example Proof 3: Rough Draft

Proof.
We know that dividing integers by integers will yield integer remainders, by properties of division. So let r_a be the remainder when you divide a by 3. Similarly for r_b and r_c with b, c.

Definition of transitivity:

\[(a, b), (b, c) \in R \implies (a, c) \in R \quad \forall a, b, c \in \mathbb{Z}\]

so we need this to be true to show transitivity. (e.g. $(1, 2), (2, 3) \in R \implies (1, 3) \in R$.)

Notice $(a, b) \in R \implies r_a = r_b$ and $(b, c) \subseteq R \implies r_b = r_c$ so $r_a = r_c$.

So R is transitive because $(a, c) \in R$ for all $(a, b), (bc) \in R$. \qed
Example Proof 3: Polished

Proof.
For transitivity to hold, we need

\[(a, b), (b, c) \in R \implies (a, c) \in R \quad \forall a, b, c \in \mathbb{Z}.\]

Let \(r_a\), \(r_b\), and \(r_c\) be the remainders when you divide \(a\), \(b\), and \(c\) by 3, respectively. Since \((a, b) \in R\), we know that \(r_a = r_b\). Since \((b, c) \in R\), we know that \(r_b = r_c\). Thus, we have \(r_a = r_c\). By definition of the relation \(R\), \((a, c) \in R\), as needed.

Thus, we have shown that \(R\) is transitive.
Outline

1. Structure
2. Clarity
3. Flow