1 Hashtables: Runtime Performance

1.1 Worst-Case Runtime

Remember that we started looking at hashtables as an alternative to storing data in lists: hashtables promised to leverage constant-time array access to improve the runtime cost of looking up/finding items in a set. Due to collisions, we don’t necessarily get constant-time lookup. In the worst case, all of the keys would hash to the same index, meaning that we would have a list of all key-value
pairs in one index in the array. Searching that list for a specific key-value pair would thus be linear in the number of keys in the hashtable.

What about the other operations?

- Inserting a key-value pair into the hash table takes constant time (assuming that computing the hashcode is constant time), since we can add the new pair to the front of the corresponding LinkedList.

- Deleting the value associated with a key could take linear time in the number of keys, if we have to search an entire linear list to find the key to delete.

- Update depends on how you implement it. If you search for the existing key-value pair and update the value, you could need time linear in the number of keys. You could, however, just add the most recent key-value pair to the front of the list and not delete the old one (searching from the front of the list so you always find the most recent value) – what would that do to the worst-case runtime?

Overall, most hashtable operations have worst-case time that is linear in the number of keys. This seems to miss the entire benefit we wanted to get from using an array underneath. Is there any way to do better?

1.2 Average-Case Runtime

One way to do better is to focus not on the worst case running time, but instead to think about the average case running time. After all, worst-case often happens only in rare cases. If the average or typical running time is better than the worst case, our data structure may work out fine after all.

In the worst case, all of our keys mapped to the same index. Put differently, the compressed keys distribute badly within the set of possible indices. The best scenario would have the keys be evenly distributed across the indices. If we have k keys and m slots in the array, an even distribution would put k/m keys in each slot. If we had only k/m keys per slot, searching for a key-value pair could take at most k/m time.

Consider a concrete example: assume we expected to have to store roughly k keys. If we created a hash table with an array size of $k/2$, then our runtime would be constant $O(1)$ (this would hold true for any array size that’s a fraction of k). Thus, there seems to be a benefit to having the size of the array be based on the number of keys. But what if we don’t know upfront how many keys we might have?

In practice, hash tables have a load factor, which is the ratio of keys to array slots. Once more keys have been inserted than the load-factor allows, hashtables are expanded automatically. For Java HashMaps, the default initial array size is 16 and the default load factor is .75. Once $16 \times .75$ keys have been inserted, Java doubles the size of the array to keep the runtime of finding key-value pairs constant time in practice. (Yes, this means that Java targets more indices than keys by default; you are welcome to set a different load factor if your context can tolerate some collisions).
1.3 Choosing Array Sizes and Hash Functions

We’ve seen that distribution of keys is important to getting good performance from a hash table. While you can’t necessarily predict what data you will need to store (and thus what a good array size might be), some choices are likely much worse than others.

Imagine that we did NOT override `hashCode`, and instead let Java compute hash codes based on memory addresses. Memory addresses are usually multiples of 8 (due to the default sizes of space that get allocated in memory – for various reasons, a fixed default size makes computer design much easier). We decide to be more generous than Java and allocate an initial array size of 32. What’s likely to happen?

Well, since addresses are multiples of 8 and there are 32 indices, we’ll end up mapping to only 4 of the indices – pretty poor use of the buckets in the array. If you’re going to use addresses as hashcodes, you are much better off creating an array of size 31 – it’s close to 32 in capacity, but 31 is relatively prime to 8, meaning you’ll get a better distribution of keys to buckets.

If instead you are willing to write your own hashcode function, then you can embed the primes in the hashcode computation (rather than in the array size). Hence our suggestion from last week that multiplying each field by a unique prime is a good way to create a hashcode. (As an aside, using primes to compute hashcodes also gives you invertible hashcodes, but that’s another possibility for another day ...)

1.4 Another Proposal to Improve Worst-Case Runtime

The worst-case runtime arose because we have a list inside of each hashtable bucket. What if we instead put ... another hashtable in each bucket? We could hash on the key with the built-in hashcode to find the outer bucket, then use a different hash function to map the key to a value in an inner hashtable. Wouldn’t this improve our performance?

It certainly could, but now you are trading time for space. The hashtables in each array bucket will take some pre-determined amount of space, where a list uses space proportional to the number of elements. You could have many unused array buckets in the nested hash table model. Whether or not this is a problem depends on your context: sometimes time matters more, sometimes space matters more. You pick your data structure based on your needs.

2 Hashcodes in perspective

We’ve seen hash functions in one context: mapping objects to integers to enable array-based access to data. But hash functions have a much larger role in CS in general, based on a general principle:

Hash Functions turn an unordered collection (set) into an ordered one.

Why is this useful? Because ordered elements lets us use data structures and algorithms that offer good run-time performance. Consider binary search trees (which you covered in CS17). How would you create a BST of `Person` or `Customer` objects from our recent lectures? On their own, these objects have no natural ordering. But if we have a hash function that maps every item to a unique integer, then we can use hashcodes to order the elements and enable searching for them quickly.
Note that the integers ascribed to objects don’t carry any particular meaning relative to the objects. They are simply tags that we can use for finding objects. What matters is that tags are ordered relative to each other, and that we can compute the same tag for an object through some function (the hash function).

But what about all that stuff about collision? Wasn’t the whole point of collisions that they are unavoidable?

Collisions are unavoidable when we force hashcodes into fewer array indices than we have keys. But for ordering items, there is no limited resource such as array indices. We just need every item to map to a unique integer. Java’s default `hashCode` method, which uses memory addresses, meets this guarantee.

Hash functions and hashcodes are thus useful for many applications in CS, when we want to ascribe some order to a collection for use in a data structure or algorithm. Keep this idea in your toolkit as you go forward in CS.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any other CS18 document by filling out the anonymous feedback form: http://cs.brown.edu/courses/cs018/feedback.