Class 10: Code review, a little more recursion, and analysis, part 1
Announcements

• Today’s topics
 • Some code review
 • Operation counting
 • Writing recurrences for operation-counting functions
 • Two-argument recursion, part 1

• Remember to hand the TAs a note about things you’d like to re-visit
Rosh Hashannah, Yom Kippur

• The lecture-capture videos for those two classes will be available on the course website.
• As mentioned in the syllabus, HW will still be due at the usual time.
Homework hint

• For problem 5, last part, you must show that if T and S are two functions and $T(n) = 3 \cdot S(n)$ then (using $M = 1$), T is eventually larger than S, and folks have had trouble with this
 • It’s a lot simpler when you notice that both functions have \mathbb{R}_+ as their codomain, i.e., for every n, the number $S(n)$ is positive.
 • Without this, the claim is actually false!
List construction simplified

• You may, after tonight’s HW, use `(list 1 2 3)` to produce the list we’d formerly have produced using `(cons 1 (cons 2 (cons 3 empty)))`

• Use language-level “Beginning Student with List Abbreviations” to see prettier printed representations of lists.
Design recipe 1

- You no longer need to provide data examples for atomic data (num, bool, string)
- You do need to provide examples of list data; use the standard form:

 ;; a num list is either
 ;; the empty list
 ;; (cons n b), where n is a num, and b is a num list
 ;; nothing else is a num list
Design Recipe 2

• The design recipe requires you to write the template for your procedure before you write the input-output specification, so that you have a name to use for your input
 • The input spec should explicitly use this name:

```scheme
;;; input:
;;; aloi, a non-empty list of student heights
;;; ...
(define (my-proc aloi) …)
```
“Generic lists”

• Some procedures will work on a num list, a bool list, a string list, an anything-list!
• We indicate this by writing 'a list; the 'a is read “alpha”, and stands for “some unspecified type”
• If you need more, you can use 'b 'c 'd
• The type signature for “first” is then
 first: 'a list -> 'a
because if it consumes a bool-list, it produces a bool, etc.
Student code

(define (odds-only) alon
 (cond
 [(empty? empty)]
 [(cons?
 [(if odd?
 (first alon
 first (rest alon) odds-only))]
)))
Student code

(define (odds-only) alon
 (cond
 [(empty? empty)]
 [(cons?
 [(cons?
 (if odd?
 (if odd?
 first alon
 first (rest alon) odds-only)))]]))

• What else is wrong here?
Student code

(define (odds-only) aloi
 (cond
 [(empty? empty)]
 [(cons?
 (if odd?
 first aloi
 first (rest aloi) odds-only)])
 []))

• What else is wrong here?
 • Odds-only should consume a list of integers, so aloi is a better name-choice
 • Doesn’t use the template!
(define (fname arg)
 (cond
 [(empty? arg) ...]
 [(cons? arg) ... (first arg) ... (fname ... (rest arg) ...)]

• Guarantees that the procedure arguments get placed right (and named)
• Guarantees that the tests are applied to the arguments
• Makes sure that the recursive result gets set up almost exactly right for almost all cases
• Matches structure of recursion diagram to make coding easier!
Student code, template version

(define (odds-only aloi)
 (cond
 [(empty? aloi) empty]
 [(cons? aloi) (if odd? (first aloi) (odds-only (rest aloi)))]))

• Still broken
 • The “odd?” needs to be part of a proc-appl-expr
 • There needs to be a “cons” somewhere
 • Lots easier to debug!
Topic switch

• *Analysis*
• Know how to write basic recursive programs
• It's time to understand the speed with which such programs work.
Demo: how slow can you go?
Last time

• A procedure that operates on lists of varying length may take different amounts of time on different lists.
• For a list of length n, we measure the "time" in units of elementary operations
• For list-length procedure, we saw that the number of elementary ops increased as the size of the input list increased
Next step: define an operation-counting function

• First draft:
 • "Let $L(n)$ be the number of elementary operations involved in applying our procedure to a list of length n."
• Domain: natural numbers (because they’re list-lengths!)
• Codomain: number of operations used.
 • Surely at least 1
 • So: positive integers
 • To make some algebra easier, we’ll say “positive reals” instead
 • So $T: \mathbb{N} \to \mathbb{R}_+$
 • Kind of like the homework problem you’re working on!
A small hitch

"Let $T(n)$ be the number of elementary operations involved in applying our procedure to a list of length n."

• What if the procedure takes different amounts of time on two different 100-element lists?
 • Example: `contains17?` is very fast on `(cons 17 (cons ...)))))))), but slow on `(cons 18 (cons 19 (.....(cons 118 empty)...)))))))`)

• Revised:

"Let $T(n)$ be the largest number of elementary operations involved in applying our procedure to any list of length n."

Studying T is called worst-case performance analysis

It's what we do because it's relatively easy!
Something surprising

"Let $T(n)$ be the largest number of elementary operations involved in applying our procedure to any list of length n."

• Surprise: it's easier to talk about this version of T than the other one
• Disappointment: it's harder to actually compute $T(n)$ for any particular $n \neq 0$, because it requires an infinite number of tests
What we *can* do

• We can often look at our programs and say "The function T must satisfy certain equations/inequalities" (today)

• Then (with practice) say something about all *solutions* of those equations, hence about the function T (next week)

• First: elementary operations
Elementary operations

- During evaluation of an expression, we count elementary operations
 - Evaluate a number-expression, string-expression, or bool-expression
 - Evaluate a name-expression (i.e., look up a binding in an environment)
 - Evaluate empty
 - Apply cons to two values
 - Apply +, *, -, / to two values
 - Apply cons?, empty?, zero?, >, <, =, etc.
 - Apply first or rest to a list
 - Add a binding to an environment
 - Remove a binding from an environment
 - Compare a boolean to true/false
Count elementary operations

i. (cons 13 (cons 4 empty))
 7

ii. (if (> 3 4) 1 2)
 (define (len aloi)
 (cond
 [(empty? aloi) 0]
 [(cons? aloi) (+ 1 (len (rest aloi)))]))

iii. (len empty)
 lookup len; eval empty; bind aloi to empty: 3
 evaluate (empty? aloi): lookup, lookup, apply: 3
 check if it's T/F: 1
 evaluate 0: 1
 unbind aloi: 1
 Total: 9
Count elementary operations

i. (len empty) took 9 operations

ii. (define lst1 (cons 1 empty))
 (len lst1)

iii. (define lst2 (cons 1 (cons 2 empty)))
 (len lst2)

(define (len aloi)
 (cond
 [(empty? aloi) 0]
 [(cons? aloi) (+ 1 (len (rest aloi)))]))
Count elementary operations (len lst1)

(define lst1 (cons 1 empty))
(len lst1)

Lookup len, lst1: 2

bind aloi to lst1: 1

evaluate (empty? aloi), test vs true: 4 [same as before]
evaluate (cons? aloi), test vs true: 4

evaluate (+ 1 (len (rest aloi))):
 evaluate +, 1: 2
 evaluate (len (rest aloi)):
 lookup len: 1
 evaluate (rest aloi): 2 lookups, 1 application
 apply len to empty: 9 [from before]
 apply +: 1
 unbind aloi: 1

Total: 19 + 9 (or 19 + L(0))

(define (len aloi)
 (cond
 [(empty? aloi) 0]
 [(cons? aloi) (+ 1 (len (rest aloi)))]))
Count elementary operations (len lst2)

Total: 19 + 19 + 9 (or 19 + L(1))

(define (len aloi)
 (cond
 [(empty? aloi) 0]
 [(cons? aloi) (+ 1 (len (rest aloi)))]))
A pattern

• "Let $L(n)$ be the largest number of elementary operations involved in applying len to any list of length $n."$

• $L(0) = 9$
• $L(1) = 19 + L(0)$
• $L(2) = 19 + L(1)$
• $L(n) = 19 + L(n - 1)$ for $n > 0$

$L(0) = 9$
$L(n) = 19 + L(n - 1)$ for $n > 0$

Call this a "recurrence relation for $L."$
Recurrence relation

- Multiple equations/inequalities
- First one or two give known facts, like $L(0) = 8$; called "base cases"
- Base case may be 0 or 1 or something else; usually 0 or 1.
 - Sometimes have two or more base cases
- Last equations/inequality says something (often inequality) about $L(n)$ in terms of prior values:
- Examples:
 - $S(n) \leq 2S(n - 1)$ for $n > 0$
 - $H(n) \leq H(n - 1) + H(n - 2)$ for $n > 1$
 - $R(n) \leq n + R \left(\left\lfloor \frac{n}{2} \right\rfloor \right) + 3$ for $n > 1$
Procedure → Recurrence

- *Don't count exactly: use constants*
- Base case usually looks like

 \[
 H(0) = A
 \]

- For the other case (usually the "cons?" clause of the main cond expression)
 - Find op count (on an input of size \(n \)) for all work done *except in recursive calls*
 - * Might be a constant, might depend on \(n \)*
 - Figure out the *argument size* in all recursive calls
 - For us, for now: typically \(n - 1 \)
 - Express total work in all recursive calls in terms of \(H \)
 - For us, typically: \(H(n - 1) \)
 - Sum these three, and write \(H(n) \leq \) this sum.
Activity

(define (contains17? aloi)
 (cond
 [(empty? aloi) false]
 [(cons? aloi) (or (= 17 (first aloi))
 (contains17? (rest aloi)))]))

For the other case (usually the "cons?" clause of the main cond expression)

 Find op count (on an input of size n) for all work done except in recursive calls
 * Might be a constant, might depend on n
 Figure out the argument size in all recursive calls
 * For us, for now: typically $n - 1$
 Express total work in all recursive calls in terms of H
 * For us, typically: $H(n - 1)$
 Sum these three, and write $H(n) \leq$ this sum.
Reminder

• Today’s topics
 • Some code review
 • Operation counting
 • Writing recurrences for operation-counting functions
 • Two-argument recursion, part 1

• Remember to hand the TAs a note about things you’d like to re-visit